Engineering Design

A Systematic Approach

Translated by Ken Wallace, Lucienne Blessing and Frank Bauert Edited by Ken Wallace

With 354 Figures

Contents

Authors' Foreword			
Εċ	litor's Foreword		
Tł	The Overall Structure of the Second Edition		
Suggestions for Using this Book in Design Teaching			
1	Introduction		
	1.1 The Scope of Design		
	1.1.1 Tasks and Activities		
	1.1.2 The Position of the Design Process Within a		
	Company		
	1.1.3 Trends		
	1.2 The Necessity for Systematic Design		
	1.2.1 Requirements and Need for Systematic Design 10		
	1.2.2 Historical Background		
	1.2.3 Current Methods		
	1 Design Methods		
	2 Systems Theory		
	3 Value Analysis		
	4 VDI Guidelines		
	1.2.4 Authors' Own Aims		
2	Fundamentals		
	2.1 Fundamentals of Technical Systems		
	2.1.1 System, Plant, Equipment, Machine, Assembly and		
	Component		
	2.1.2 Conversion of Energy, Material and Signals 29		
	2.1.3 Functional Interrelationship		
	1 Fundamentals		
	2 Logical Considerations 34		
	2.1.4 Working Interrelationship 37		

vi Contents

	1 Physical Effects	
	2 Geometric and Material Characteristics	40
	2.1.5 Constructional Interrelationship	42
	2.1.6 System Interrelationship.	42
	2.1.7 Data Processing Systems	
	2.1.8 Objectives, Constraints and Guidelines	
	2.2 Fundamentals of the Systematic Approach	46
	2.2.1 Psychology of Problem Solving	46
	1 Problem Characteristics	47
	2 Means for Problem Solving—Thought Structures	47
	3 Characteristics of Good Problem Solvers	.50
	4 Problem Solving as Information Conversion	.53
	2.2.2 General Working Methodology	54
	1 Purposeful Thinking	.55
	2 Analysis	.56
	3 Abstraction	.57
	4 Synthesis	.57
	5 Generally Applicable Methods	
	6 Division of Labour and Collaboration	.60
3	Process of Planning and Designing	
	3.1 General Problem-Solving Process.	.61
	3.2 Flow of Work During the Process of Planning and	
	Designing.	
	1 Planning and Clarifying the Task	
	2 Conceptual Design	
	3 Embodiment Design	
	4 Detail Design.	.69
1	General Methods for Finding and Evaluating Solutions	71
7	4.1 Solution Finding Methods.	
	4.1.1 Conventional Methods.	
	1 Literature Search	
	2 Analysis of Natural Systems	
	3 Analysis of Existing Technical Systems.	
	4 Analogies	
	5 Measurements and Model Tests	74
	4.1.2 Intuitive Methods	
	1 Brainstorming	76
	2 Method 635	
	3 Gallery Method	
	4 Delphi Method	
	5 Synectics	
	6 Combination of Methods	
	4.1.3 Discursive Methods	0.0
	1 Systematic Study of Physical Processes	.82

Contents vii

	2 Systematic Search with the Help of Classification	
	Schemes	84
	3 Use of Design Catalogues	
	4.1.4 Methods for Combining Solutions.	
	1 Systematic Combination	
	2 Combining with the Help of Mathematical Methods	
	4.2 Selection and Evaluation Methods	99
	4.2.1 Selecting Solution Variants	
	4.2.2 Evaluating Solution Variants	
	1 Basic Principles	
	2 Comparison of Evaluation Procedures	.116
5	Product Planning and Clarifying the Task	.119
	5.1 Product Planning	.119
	5.1.1 Task and General Approach ;	.119
	5.1.2 Situation Analysis	.122
	5.1.3 Formulating Search Strategies	
	5.1.4 Finding Product Ideas	.126
	5.1.5 Selection of Product Ideas	.127
	5.1.6 Product Definition	.128
	5.1.7 Product Planning in Practice	.129
	5.2 Clarifying the Task	
	5.2.1 The Importance of Clarifying the Task.	.130
	5.2.2 The Requirements List (Design Specification)	.131
	1 Contents	.131
	2 Format	.132
	3 Listing the Requirements	
	4 Examples	.135
	5 Further Applications	
	5.2.3 Practical Application of Requirements Lists	.137
6	Conceptual Design	.139
	6.1 Steps of Conceptual Design	.139
	6.2 Abstracting to Identify the Essential Problems	
	6.2.1 Aim of Abstraction	
	6.2.2 Abstraction and Problem Formulation	
	6.2.3 Systematic Broadening of Problem Formulation	
	6.3 Establishing Function Structures	.149
	. 6.3.1 Overall Function	.149
	6.3.2 Breaking Down into Sub-Functions	150
	6.3.3 Practical Uses of Function Structures	.155
	6.4 Developing Working Structures	.161
	6.4.1 Searching for Working Principles	.161
	6.4.2 Combining Working Principles	.164
	6.4.3 Selecting Suitable Working Structures	.170
	6.4.4 Practical Uses of Working Structures	.170

viii Contents

	6.5 Developing Concepts	173
	6.5.1 Firming up into Principle Solution Variants	173
	6.5.2 Evaluating Principle Solution Variants	
	6.5.3 Practical Approach to Finding Concepts	183
	6.6 Examples of Conceptual Design	
	6.6.1 Mechanical System	
	•	
7	Embodiment Design	199
	7.1 Steps of Embodiment Design	199
	7.2 Checklist for Embodiment Design.	
	7.3 Basic Rules of Embodiment Design	
	7.3.1 Clarity	
	7.3.2 Simplicity	
	7.3.3 Safety	
	1 Nature and Scope of Safety Methods	
	2 Direct Safety Principles	
	3 Indirect Safety Principles	
	4 Designing for Safety.	
	7.4 Principles of Embodiment Design	
	7.4.1 Principles of Force Transmission	
	1 Flowlines of Force and the Principle of Uniform	
	Strength.	. 239
	2 Principle of Direct and Short Force Transmission	
	Path	239
	3 Principle of Matched Deformations	241
	4 Principle of Balanced Forces	246
	7.4.2 Principle of the Division of Tasks.	
	1 Assignment of Sub-Functions	248
	2 Division of Tasks for Distinct Functions	250
	3 Division of Tasks for Identical Functions	254
	7.4.3 Principle of Self-Help	257
	1 Concepts and Definitions	257
	2 Self-Reinforcing Solutions.	
	3 Self-Balancing Solutions	
	4 Self-Protecting Solutions	
	7.4.4 Principles of Stability and Bi-Stability	
	1 Principle of Stability	
	2 Principle of Bi-Stability	
	7.4.5 Principles for Fault Free Design	
	7.5. Guidelines for Embodiment Design . ;	
	7.5.1 General Considerations	
	7.5.2 Design to Allow for Expansion	
	1 Expansion	
	2 Expansion of Components	
	3 Relative Expansion of Components	
	7.5.3 Design to Allow for Creen and Relaxation	286

1	Behaviour of Materials Subject to Temperature	
	Changes	286
	Creep	
	Relaxation	
	Design Features	
	Design Against Corrosion Damage	
	Causes and Effects of Corrosion	
	Free Surface Corrosion.	
3	Contact Corrosion	.297
	Stress Corrosion	
	Selective Corrosion within a Material	
6	Examples of Designing Against Corrosion Damage	302
	Design for Ergonomics	
	Fundamentals	
	Human Activities and Ergonomic Constraints	
	Identifying Ergonomic Requirements	
	Design for Aesthetics.	
	Aims	
	Visual Information	
	Guidelines for Achieving Good Aesthetics	
	Design for Production	
	Relationship between Design and Production	
	Appropriate Overall Layout Design	
	Appropriate Form Design of Components	
	Appropriate Selection of Materials and of Semi-	
	Finished Materials	.334
	Appropriate Use of Standard and Bought-Out	
	Components.	339
6	Appropriate Documentation	340
	Design for Ease of Assembly	
1	Types of Assembly	.340
2	Designing the Layout	341
3	Designing Assembly Interfaces	344
	Designing Interface Elements.	
	Guidelines for Application and Selection	
	Design to Standards	
	Objectives of Standardisation	
	Types of Standard	
	Preparing Standards	
	Using Standards.	
	Developing Standards	355
	0 Design for Ease of Maintenance	357
1	Goals and Terminology	357
	Design for Ease of Maintenance	
	Design for Recycling.	
	Aims and Terminology	
_		

x Contents

	2 Recycling Support Processes	362
	3 Design for Recycling	364
	4 Examples of Design for Recycling	
	5 Evaluating Recycling Potential	
	7.5.12 Design for Minimum Risk	
	1 Coping with Risks	
	2 Examples of Design for Minimum Risk	
	7.6 Evaluating Embodiment Designs	
	7.7 Example of Embodiment Design.	
	7.8 Detail Design.	. 400
0	Danielanina Sina Danasa and Madulan Duaduate	405
δ	Developing Size Ranges and Modular Products	
	8.1 Size Ranges	
	8.1.1 Similarity Laws	
	8.1.2 Decimal-Geometric Preferred Number Series	
	8.1.3 Selection of Step Sizes.	412
	8.1.4 Geometrically Similar Size Ranges	
	8.1.5 Semi-Similar Size Ranges	
	1 Overriding Similarity Laws	
	2 Overriding Task Requirements	422
	3 Overriding Production Requirements	423
	4 Adaptation with the Help of Exponential Equations	. 425
	5 Examples	427
	8.1.6 Development of Size Ranges	
	8.2 Modular Products	
	8.2.1 Modular Product Systematics	434
	8.2.2 Modular Product Development	
	8.2.3 Advantages and Limitations of Modular Systems	
	8.2.4 Examples	
	0.2.1 Examples	150
q	Design for Quality	455
	9.1 Faults and Disturbing Factors.	
	9.2 Fault-Tree Analysis	
	9.3 Failure Mode and Effect Analysis (FMEA).	
	7.5 Pallule Wode and Ellect Alialysis (PWIEA).	403
10	Design for Minimum Cost	467
10	10.1 Cost Factors.	
	10.2 Fundamentals of Cost Calculations	
	10.3 Methods for Estimating Costs.	
	10.3.1 Comparing with Relative Costs	
	10.3.2 Estimating Using Share of Material Costs.	
	10.3.3 Estimating Using Regression Analysis	
	10.3.4 Extrapolating Using Similarity Relations.	
	1 Basic Design as Reference	
	2 Operation Element as Reference	
	3 Regression Analysis as Reference .	489

Contents xi

10.3.5 Cost Structures. 10.4 Value Analysis.	
10.5 Rules for Minimising Costs.	
11 Summary	495
11.1 The Systematic Approach	495
11.2 Experiences of Applying the Systematic Approach in	
Practice	499
References	503
English Bibliography.	. 531