Helge Toutenburg

Statistical Analysis of Designed Experiments

Second Edition

With Contributions by Thomas Nittner

Contents

	Pre	face		v
1	Introduction			1
	1.1	Data,	Variables, and Random Processes	1
	1.2	Basic 1	Principles of Experimental Design	3
	1.3	Scaling	g of Variables	5
	1.4	Measu	ring and Scaling in Statistical Medicine	7
	1.5	Experi	imental Design in Biotechnology	8
	1.6	Relativ	ve Importance of Effects—The Pareto Principle	9
	1.7	An Al	ternative Chart	10
	1.8	A One	Way Factorial Experiment by Example	15
	1.9	Exerci	ses and Questions	19
2	Con	npariso	n of Two Samples	21
	2.1	Introd	uction	21
	2.2	Paired	t–Test and Matched–Pair Design	22
	2.3	Compa	arison of Means in Independent Groups	25
		2.3.1	Two–Sample t –Test	25
		2.3.2	Testing $H_0: \sigma_A^2 = \sigma_B^2 = \sigma^2$	25
		2.3.3	Comparison of Means in the Case of Un-	
		·	equal Variances	26
		2.3.4	Transformations of Data to Assure	
			Homogeneity of Variances	27
		2.3.5	Necessary Sample Size and Power of the Test \ldots	27

		2.3.6	Comparison of Means without Prior Test-	
			ing H_0 : $\sigma_A^2 = \sigma_B^2$; Cochran–Cox Test for	
			Independent Groups	27
	2.4		on's Sign–Rank Test in the Matched–Pair	
			· · · · · · · · · · · · · · · · · · ·	29
	2.5		Test for Homogeneity of Wilcoxon, Mann and	
			εγ	33
	2.6	Compa	rison of Two Groups with Categorical Response .	38
		2.6.1	McNemar's Test and Matched–Pair Design	38
		2.6.2	Fisher's Exact Test for Two Independent	
			Groups	39
	2.7	Exercis	ses and Questions	41
3			Regression Model	45
	3.1		otive Linear Regression	45
	3.2		inciple of Ordinary Least Squares	47
	3.3		tric Properties of Ordinary Least Squares	
			tion	50
	3.4	Best Li	inear Unbiased Estimation	51
		3.4.1	Linear Estimators	52
		3.4.2	$Mean Square Error \dots \dots$	53
		3.4.3		55
		3.4.4	Estimation of σ^2	57
	3.5		ollinearity	60
		3.5.1		60
		3.5.2	Estimation within Extreme Multicollinearity	61
		3.5.3	Weak Multicollinearity	63
	3.6		al Regression under Normal Errors	67
	3.7	Testing Linear Hypotheses		
	3.8			
		3.8.1		73
		3.8.2	Multiple Regression	79
	3.9		eneral Linear Regression Model	83
		3.9.1		83
		3.9.2	Misspecification of the Covariance Matrix	85
	3.10	0	ostic Tools	86
			Introduction	86
		3.10.2	Prediction Matrix	86
		3.10.3	Effect of a Single Observation on the Esti-	
			mation of Parameters	91
		3.10.4	Diagnostic Plots for Testing the Model	
			Assumptions	96
		3.10.5	Measures Based on the Confidence Ellipsoid	97
		3.10.6	Partial Regression Plots	102
		3.10.7	Regression Diagnostics by Animating Graphics .	104

	3.11	Exercises and Questions	110		
4	Single–Factor Experiments with Fixed				
		Random Effects	111		
	4.1	Models I and II in the Analysis of Variance	111		
	4.2	One–Way Classification for the Multiple Compari-			
		son of Means	112		
		4.2.1 Representation as a Restrictive Model	115		
		4.2.2 Decomposition of the Error Sum of Squares	117		
		4.2.3 Estimation of σ^2 by MS_{Error}	120		
	4.3	Comparison of Single Means	123		
		4.3.1 Linear Contrasts	123		
		4.3.2 Contrasts of the Total Response Values in			
		the Balanced Case	126		
	4.4	Multiple Comparisons	132		
		4.4.1 Introduction	132		
		4.4.2 Experimentwise Comparisons	132		
		4.4.3 Select Pairwise Comparisons	135		
	4.5	Regression Analysis of Variance	142		
	4.6	One–Factorial Models with Random Effects	145		
	4.7	Rank Analysis of Variance in the			
		Completely Randomized Design	149		
		4.7.1 Kruskal–Wallis Test	149		
		4.7.2 Multiple Comparisons	152		
	4.8	Exercises and Questions	154		
5	Mor	e Restrictive Designs	157		
	5.1	Randomized Block Design	157		
	5.2	Latin Squares	165		
		5.2.1 Analysis of Variance	167		
	5.3	Rank Variance Analysis in the Randomized Block			
		Design	172		
		5.3.1 Friedman Test	172		
		5.3.2 Multiple Comparisons	175		
	5.4	Exercises and Questions	176		
6	Mul	tifactor Experiments	179		
	6.1	Elementary Definitions and Principles	179		
	6.2	Two–Factor Experiments (Fixed Effects)	183		
	6.3	Two–Factor Experiments in Effect Coding	188		
	6.4	Two–Factorial Experiment with Block Effects	196		
	6.5	Two–Factorial Model with Fixed Effects—Confidence			
		Intervals and Elementary Tests	199		
	6.6	Two-Factorial Model with Random or Mixed Effects	203		
		6.6.1 Model with Random Effects	203		
			-		

.

/

		6.6.2	Mixed Model	207
	6.7	Three	-Factorial Designs	211
	6.8		Plot Design	215
	6.9		torial Design	219
		6.9.1	The 2^2 Design \ldots \ldots \ldots \ldots \ldots \ldots	219
		6.9.2	The 2^3 Design \ldots \ldots \ldots \ldots \ldots	222
	6.10	Exercis	ses and Questions	225
7	Mod	lels for	Categorical Response Variables	231
	7.1	Genera	alized Linear Models	231
		7.1.1	Extension of the Regression Model	231
		7.1.2	Structure of the Generalized Linear Model	233
		7.1.3	Score Function and Information Matrix	236
		7.1.4	Maximum Likelihood Estimation	237
		7.1.5	Testing of Hypotheses and Goodness of Fit	240
		7.1.6	Overdispersion	241
		7.1.7	Quasi Loglikelihood	243
	7.2	Contin	agency Tables	245
		7.2.1	Overview	245
		7.2.2	Ways of Comparing Proportions	246
		7.2.3	Sampling in Two–Way Contingency Tables	249
		7.2.4	Likelihood Function and Maximum Likeli-	
			hood Estimates	250
		7.2.5	Testing the Goodness of Fit	252
-	7.3		alized Linear Model for Binary Response	254
		7.3.1	Logit Models and Logistic Regression	254
		7.3.2	Testing the Model	257
		7.3.3	Distribution Function as a Link Function	258
	7.4		Models for Categorical Data	258
	7.5		ness of Fit—Likelihood Ratio Test	260
	7.6	0	ear Models for Categorical Variables	261
		7.6.1	Two–Way Contingency Tables	261
		7.6.2	Three–Way Contingency Tables	264
	7.7		pecial Case of Binary Response	267
	7.8		g of Categorical Explanatory Variables	270
		7.8.1	Dummy and Effect Coding	270
		7.8.2	Coding of Response Models	273
			Coding of Models for the Hazard Rate	274
	7.9		sions to Dependent Binary Variables	277
		7.9.1	Overview	277
		7.9.2	Modeling Approaches for Correlated Response .	279
		7.9.3	Quasi-Likelihood Approach for Correlated	
		- ~ ·	Binary Response	280
		7.9.4	The Generalized Estimating Equation Method	
			by Liang and Zeger	281

		7.9.5	Properties of the Generalized Estimating	
			Equation Estimate $\hat{\beta}_G$	283
		7.9.6	Efficiency of the Generalized Estimating	
			Equation and Independence Estimating Equa-	
			tion Methods	284
		7.9.7	Choice of the Quasi–Correlation Matrix $R_i(\alpha)$.	285
		7.9.8	Bivariate Binary Correlated Response Variables .	285
		7.9.9	The Generalized Estimating Equation Method .	286
		7.9.10	The Independence Estimating Equation Method	288
		7.9.11	An Example from the Field of Dentistry	288
		7.9.12	Full Likelihood Approach for Marginal Models .	293
	7.10		es and Questions	294
8	Rep	eated N	leasures Model	295
	8.1	The Fu	indamental Model for One Population	295
	8.2	The Re	epeated Measures Model for Two Populations	298
	8.3	Univar	iate and Multivariate Analysis	301
		8.3.1	The Univariate One–Sample Case	301
		8.3.2	The Multivariate One–Sample Case	301
	8.4	The U	nivariate Two–Sample Case	306
	8.5	The M	ultivariate Two–Sample Case	307
	8.6	Testing	g of $H_0: \Sigma_x = \Sigma_y \dots \dots \dots \dots \dots \dots \dots$	308
	8.7	Univar	iate Analysis of Variance in the Repeated	
		Measu	res Model	309
		8.7.1	Testing of Hypotheses in the Case of Com-	
			pound Symmetry	309
		8.7.2	Testing of Hypotheses in the Case of Sphericity .	311
		8.7.3	The Problem of Nonsphericity	315
		8.7.4	Application of Univariate Modified Ap-	
			proaches in the Case of Nonsphericity	316
		8.7.5	Multiple Tests	317
		8.7.6	Examples	318
	8.8	Multiv	ariate Rank Tests in the Repeated Measures Model	324
	8.9	Catego	rical Regression for the Repeated Binary	
		Respon	nse Data	329
		8.9.1	Logit Models for the Repeated Binary Re-	
			sponse for the Comparison of Therapies	329
		8.9.2	First–Order Markov Chain Models	330
		8.9.3	Multinomial Sampling and Loglinear Mod-	
			els for a Global Comparison of Therapies	332
	8.10	Exercis	ses and $Questions \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	339
9			Design	341
	9.1		uction	341
	9.2	Linear	Model and Notations	342

	9.3	2×2 Cross-Over (Classical Approach)	3
		9.3.1 Analysis Using t -Tests	4
		9.3.2 Analysis of Variance	8
		9.3.3 Residual Analysis and Plotting the Data 35	2
		9.3.4 Alternative Parametrizations in 2×2 Cross-	
		Over	6
		9.3.5 Cross-Over Analysis Using Rank Tests	8
	9.4	2×2 Cross–Over and Categorical (Binary) Response 36	8
		9.4.1 Introduction	8
		9.4.2 Loglinear and Logit Models	2
	9.5	Exercises and Questions	4
10	Stati	istical Analysis of Incomplete Data 38	5
	10.1	Introduction	
	10.2	Missing Data in the Response	
		10.2.1 Least Squares Analysis for Complete Data 39	
		10.2.2 Least Squares Analysis for Filled–Up Data 39	
		10.2.3 Analysis of Covariance—Bartlett's Method 39	
	10.3	Missing Values in the X -Matrix	
	2010	10.3.1 Missing Values and Loss of Efficiency 39	
		10.3.2 Standard Methods for Incomplete X -Matrices . 39	
	10.4	Adjusting for Missing Data in 2×2 Cross–Over Designs 40	
		$10.4.1$ Notation $\ldots \ldots 40$	
		10.4.2 Maximum Likelihood Estimator (Rao, 1956) 40	
		10.4.3 Test Procedures	3
	10.5	Missing Categorical Data)7
		$10.5.1$ Introduction $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 40$)7
		10.5.2 Maximum Likelihood Estimation in the	
		Complete Data Case	18
		10.5.3 Ad–Hoc Methods	9
		10.5.4 Model–Based Methods	0
	10.6	Exercises and Questions	2
A	Mat	rix Algebra 41	5
	A.1	Introduction	.5
	A.2	Trace of a Matrix	.8
	A.3	Determinant of a Matrix	.8
	A.4	Inverse of a Matrix	20
	A.5	Orthogonal Matrices	
	A.6	Rank of a Matrix 42	
	A.7	Range and Null Space	
	A.8	Eigenvalues and Eigenvectors	
	A.9	Decomposition of Matrices	
	A.10		
	A.11	-	
		-	

	A.12	Generalized Inverse	434	
	A.13	Projections	442	
	A.14	Functions of Normally Distributed Variables	443	
	A.15	Differentiation of Scalar Functions of Matrices	446	
	A.16	Miscellaneous Results, Stochastic Convergence	449	
в	Theo	oretical Proofs	453	
	B.1	The Linear Regression Model	453	
	B.2	${\it Single-Factor\ Experiments\ with\ Fixed\ and\ Random\ Effects}$	475	
С	Dist	ibutions and Tables	479	
Re	References			
In	Index 4			