Spectral Analysis and Filter Theory in Applied Geophysics

With 164 Figures and 23 Tables

Contents

•

Ι	-	ectral Analysis of Deterministic ocesses	7
1	Fou	rier Series Representation of Periodic Functions	9
2	Spe	ectral Representation of Nonperiodic Processes	13
	2.1	The Fourier Integral	13
	2.2	Amplitude and Phase Spectra	18
	2.3	Theorems and Symmetry Properties of the Fourier Trans-	
		form	21
	2.4	The Two-Dimensional Fourier Transform	26
	2.5	The Laplace Transform	28
	2.6	Determination of the Inverse Fourier Integral by Com-	
		plex Analysis	33
	2.7	The Hilbert Transform and the Instantaneous Frequency	38
3	The	e Dirac Delta Function and its Fourier Transform	41
	3.1	Definition of the Delta Function	41
	3.2	The Fourier Transform of the Delta Function	42
	3.3	Fourier Transform of a Series of Delta Functions	46
4	Spe	ctral Analysis of Time-Limited Observations of	
]	Infinitely Long Processes	49
	4.1	The Spectra of Time-Limited Observations	49
	4.2	Comparison of Weighting Functions	51
5	Spe	ctral Analysis of Discrete Functions	59
	5.1	Acquisition of Discrete Data for Continuous Functions	59
	5.2	Sampling Theorem and Alias Effects	61
	5.3	Fourier Transform of Discrete Functions (DFT)	70

	5.4	The Fast Fourier Transform	72
	5.5	The Two-Dimensional Fourier Transform	78
	5.6	Convolution of Time Series	79
	5.7	Theorems of the Discrete Fourier Transform	81
6	z-Ti	cansform Representation of Time Series	85
	6.1	Definition of the z-Transform	86
	6.2	Convergence of the z-Transform	87
	6.3	Properties of the z-Transform	92
	6.4	Relationship between the z-Transform and the Dis-	
		crete Fourier Transform	95
	6.5	The Inverse z-Transform	97
	Б.,		
7		mples of the Use of the Fourier Transform in	101
		Applied Seismics	101
	7.1	Frequency-Wavenumber Analysis of Seismic Signals 7.1.1 Frequency-wavenumber representation of seis-	102
		7.1.1 Frequency-wavenumber representation of seis- mic signals	102
		7.1.2 Examples of frequency-wavenumber analysis	102
	7.2	The τ -p Transform and its Application in Seismics	112
	1.2	7.2.1 Principles of the τ -p transform	112
		7.2.2 Numerical calculation of the τ - <i>p</i> transform	112
		7.2.3 Decomposition of a wavefield into plane waves	118
		7.2.4 Inverse τ -p transform	120
		7.2.5 Applications of the τ -p transform in seismics .	120 122
	7.3	Migration of Seismic Sections in the $1-p$ transform in seismics .	122
	1.0	Frequency-Wavenumber Domain	126
		7.3.1 Principles of wave-equation migration	120
		7.3.2 Frequency-wavenumber migration	130
	7.4	Calculation of Synthetic Seismograms	132
	7.5	Estimation of the Absorption and Phase Velocity of	102
	1.0	Seismic Waves	136
		7.5.1 Determination of the attenuation of seismic wave	-
		7.5.2 Analysis of seismic surface waves	139
		THOUSDE OF DEDITIE DUFICED TOTOD	100

References for Part I

II Spectral Analysis of Random Processes 149

8	Cha	aracter	ization of Random Processes in the Time	;
	8	and Fre	equency Domains	151
	8.1	Autoc	ovariance and Cross-Covariance Functions	154
		8.1.1	Definitions of the autocovariance and	
			cross-covariance functions	154
		8.1.2	Information provided by the autocovariance and	
			cross-covariance functions	156
		8.1.3	Properties of the autocovariance and	
			cross-covariance functions of random processes	159
		8.1.4	Correlation methods	161
		8.1.5	Summary	165
	8.2	The P	ower Spectral Density Function	165
•		8.2.1	Introduction to the power spectrum	165
		8.2.2	The Wiener-Khinchin transformation theorem.	167
		8.2.3	Properties of the power spectral density function	170
		8.2.4	Typical forms of random processes	173
		8.2.5	Examples of the calculation of power spectra $% \left({{{\bf{x}}_{i}}} \right)$.	177
9	Esti	imatio	n of the Power Spectral Density Function	179
U	9.1		ods for Estimating the Power Spectral Density	1.0
	5.1		ion	179
	9.2		and Variance as Quality Indicators of the Esti-	110
		mate o	of the Spectrum	181
		9.2.1	Bias and variance of the periodogram estimate	183
		9.2.2	Bias and variance of the Blackman-Tukey spec-	
				188
	9.3	Confid	lence Limits and Bandwidth of the Blackman-	
		Tukey	Spectral Estimate	192
		9.3.1		192
		9.3.2	The bandwidth of several spectral windows \ldots	196
	9.4	Confid	lence Limits and Resolution of the Periodogram	
		Estim	ate	197
	9.5	Practi	cal Determination of the Power Spectra	199
		9.5.1	Algorithms for determining the power spectral	
			density function of discrete sequences	199
		9.5.2	Prewhitening of the spectra	204
		9.5.3	Choice of parameter values for the Blackman-	
			Tukey and periodogram estimates	204

	9.5.4 Example of the spectral estimation of a random process	208
10 Eva	luation of Magnetotelluric Survey Data	215
		216
		221
		224
Refe	erences for Part II	234
	Spectral Analysis of Random Processes by Model Fitting 2	37
11 Spe	ctral Estimation by Model Fitting	239
		239
11.2	Power Spectra of Autoregressive Processes	242
	11.2.1 The autocovariance function of autoregressive	
	I	242
	11.2.2 Calculation of the power spectra of AR processes	
		251
		258
	v i v	262
	1	268
11.7	Using AR or MA Models for the Spectral Analysis of	
		269
11.8	Estimation of the Parameter Values for MA and $ARMA$	
	Processes	271
11.9	Spectral Analysis of Nonstationary Processes	274
	mating Power Spectra using Criteria from	
	5	279
	Maximum-Entropy Spectral Analysis	
	-	283
12.3	1 V	288
	12.3.1 Fundamentals of the maximum-likelihood esti-	
	mate	288
	12.3.2 Transfer of the maximum-likelihood principle	
	· ·	289
12.4	Concluding Assessment of the Spectral Analysis Meth-	
	ods for Random Processes	293

References for Part III

IV	F	unda	mentals of Filter Theory	299
13	Filte	ering f	rom the Viewpoint of System Theory	301
	13.1	Types	of Filters	. 301
	13.2	-	se-Response and Frequency-Response	
			ons for Characterizing Linear, Time-Invariant	
			in the Time and Frequency Domains	
		-	Output Relationships of Linear Filters	
			on of Linear Filters	
	13.5	-	ties of Frequency-Response Functions	
			Symmetry properties	
			The causality condition and its consequences	
		13.5.3	Consequences of the stability requirement for	
			causal filters	
			Spectra of real, stable, causal filters	
	13.6	-	l Types of Filters	
			Filters without a phase shift	
			Filters with a linear phase spectrum	
			Introduction to minimum-phase filters	
		13.6.4	All-pass filters	. 322
14		-	n the Frequency Domain	325
	14.1		of Frequency Filters and their Impulse Response	
			ons	
	14.2		nations of Linear Filters	
			Cascade filters	
			Parallel filters	
			Examples of filter combinations	
	14.3		sive Filters	
			First-order recursive filters	
		14.3.2	Recursive representation of rational filters	. 341

References for Part IV

344

295

\mathbf{V}	D	igital Filtering	347
15	$\begin{array}{c} 15.1 \\ 15.2 \end{array}$	ics of Digital Filtering // Types of Digital Filters	349 350 352 354
16		ering using Simple Mathematical Operations	361
		Filtering using Weighted Averaging	361 364
		matical Operations	304
17	Ι	igning Nonrecursive Digital Filters of Finite Length	367
		Designing Digital Filters by Fourier Series Approxima- tion	367
	17.2	Designing Digital Filters by Sampling the Frequency Response Function	373
18	Syn	thesis of Recursive Digital Filters	379
	18.1	Design of a Digital Filter by Approximation of an Ana- log Filter	380
		18.1.1 Approximation of analog filters using the impulse invariance method	380
	18.2	18.1.2 The bilinear transform and frequency prewarping Design of Recursive Filters by Positioning Poles and	
	18.3	Zeros	394
	18.4	tion for Selected Frequencies	$400 \\ s402$
	Refe	erences for Part V	404
V	[]	Fundamentals of Optimum Filtering	407

19 Designing Analog and Digital Optimum Filt	ers 409	9
19.1 The Wiener Optimum Filter	411	1
19.2 Solving the Wiener Filter Problem	413	3
19.3 Matching Filters to Signals in the Presence of	f Noise \cdot 424	4

	19.4	The Effects of Optimum Filters in the Frequency Domain	428
	19.5	Design of Digital Optimum Filters	430
	19.6	Extension of the Theory of Optimum Filters to Non-	
		· ·	435
		0	
20	App	olication of Optimum Filters to Reflection	
	S	Seismic Data 4	139
	20.1	Signal Compression using Shaping Filters	441
		20.1.1 Shaping filters for white signal sequences	442
		20.1.2 Signal contraction when noise is present	444
	20.2	Improving the Signal-to-Noise Ratio using Optimum	
			447
		20.2.1 Detection of weak signal arrivals by prediction-	
			447
		20.2.2 Improving the signal-to-noise ratio using the	
			448
	20.3	-	453
	20.0	Summary	100
21	Kalı	man Filters 4	155
			456
			462
		-	469
		The Discrete Kalman Filter	
	2 1.1		474
		-	481
	91 5	-	488
	21.0		400
	Refe	erences for Part VI 4	190
	Iten		
\mathbf{V}	Π	Fundamentals of Deconvolution and their	
		Application to Reflection Seismic Data 4	93
		11	
22	Mat	thematical Basis of Deconvolution 4	195
	22.1	Exact Deconvolution	496
	22.2	Optimum Deconvolution applying Various Mathemat-	
			500
	22.3		503
		•	503
		22.3.2 Calculation of the complex cepstrum of a time	
			504
			I

		22.3.3 Cepstrum properties of nonperiodic signals and
		impulse sequences as a basis for deconvolution 509
	22.4	Deconvolution of Nonstationary Time Series 513
23		onvolution: Problems and Approaches in
	Reflection Seismics	
	23.1	Examples of Deterministic Deconvolution 516
		23.1.1 Suppression of seismic ghost reflections 517
		23.1.2 Elimination of water reverberation effects 519
	23.2	Deconvolution using Stochastic Models
		23.2.1 Estimation of the basic wavelet from the seis-
		mogram and determination of signal arrival times 521
		23.2.2 The model assumptions
	23.3	Predictive Deconvolution
	23.4	Homomorphic Seismogram Deconvolution 532
	23.5	Dynamic Deconvolution
	23.6	Summary and Outlook
	Refe	erences for Part VII 544
VI	II	Multidimensional and Multichannel Filters 547
24	Mul	tidimensional Filters 549
		Multidimensional Impulse Response Functions 549
		Two-Dimensional Filtering of Discrete Fields 551

24.3.3 Velocity and frequency-wavenumber filtering	. 566
25 Two-Dimensional Filters for Gravity and	_

581
582
585
586
589
591

		25.2.4	Approximating the second derivative by aver-	FOF
			aging procedures	595
		25.2.5		F 00
			continuation of the field \ldots	
			Summary and discussion	601
	25.3		umber Analysis of Magnetic Data and Estimates	
		of Stru	acture by Downward Continuation of the Field .	603
26	Mul	tichan	nel Filtering of Seismic Data	609
	26.1	Basics	of Multichannel Filtering	610
		26.1.1	Input-output relationships of multichannel filter	s610
		26.1.2	Digital multichannel filters in the time domain	612
	26.2	Multic	hannel Optimum Filters	616
		26.2.1	Fundamentals of multichannel Wiener optimum	
			filters	617
		26.2.2	Comparison of the most commonly used mul-	
			tichannel optimum filters	625
		26.2.3	Designing optimum stacking filters using stochas-	-
			tic models	
	26.3	Summa	ary	
	Refe	erences	s for Part VIII	640
	Aut	hor In	dex	645
	Sub	ject In	dex	651

120