H.A. Eiselt \cdot C.-L. Sandblom

Integer Programming and Network Models

With Contributions by K. Spielberg, E. Richards, B.T. Smith, G. Laporte, B.T. Boffey

With 165 Figures and 43 Tables

CONTENTS

In	trod	uction: Basic Definitions and Results	1
a	Line	ar Programming	3
	a.1 a.2 a.3	Fundamental Concepts and the Simplex Method Duality and Postoptimality Analysis Problems with Special Structures	3 8 11
b	Ana	lysis of Algorithms	13
J.	b.1 b.2 b.3	Algorithms and Time Complexity Functions Examples of Time Complexity Functions Classes of Problems and Their Relations	13 19 26
c	Gra	ph Theory	35
	c.1 c.2 c.3 c.4	Basic Definitions and Examples Representation and Storage of Graphs Reachability and Connectivity Graphs with Special Structures	35 43 51 57
d	Dyna	amic Programming	65
	d.1 d.2 d.3	Basic Ideas A General Algorithm Various Examples	65 68 73

٨

Pa	art I	: Integer Programming	87
1	The	Integer Programming Problem and its Properties	. 89
	1 1	Definitions and Basic Concents	80
	1.1	Relaxations of Integer Programming Problems	100
	1.3	Polyhedral Combinatorics	103
2	For	mulations in Logical Variables	111
	2.1	The Modeling of Discrete Variables	111
	2.2	The Modeling of Fixed Charges	113
	2.3	Disjunctive Variables	114
	2.4	Constraint Selection	114
	2.5	Imposing a Sequence on Variables	116
	2.6	Imposing a Sequence on Constraints	116
	2.7	Absolute Values of Functions and Nonconcave Objectives	118
		2.7.1 A Problem with Collective Absolute Values	118
		2.7.2 A Problem with Individual Absolute Values	119
		2.7.3 A Problem with a Nonconcave Objective	121
	2.8	Piecewise Linear Functions	122
	2.9	Semicontinuous Variables	128
3	Арр	lications and Special Structures	129
	3.1	Applications	129
		3.1.1 A Distribution-Location Problem	129
		3.1.2 A Cutting Stock Problem	133
		3.1.3 Examination Timetabling	135
		3.1.4 Forestry Harvesting	137
		3.1.5 Technology Choice	140
		3.1.6 Political Districting	142
		3.1.7 Apportionment Problems	144
		3.1.8 Open Pit Mining	146
		3.1.9 Bin Packing and Assembly Line Planning	149
	3.2	Problems with Special Structures	151
		3.2.1 Knapsack Problems	151
		3.2.2 Set Covering, Set Packing, and Set Partitioning Problems	155
4	Refe	ormulation of Problems	161
	4.1	Strong and Weak Formulations	161

٠

	4.2	Model Strengthening and Logical Processing	166
		4.2.1 Single Constraint Procedures	16/
	4.2	4.2.2 Multiple Constraint Procedures	1/1
	4.3	Aggregation	1//
	4.4	Disaggregation	182
5	Cutt	ing Plane Methods	187
	5.1	Dantzig's Cutting Plane Method	188
	5.2	Gomory's Cutting Plane Methods	192
	5.3	Cutting Plane Methods for Mixed Integer Programming	199
6	Brar	ich and Bound Methods	205
	6.1	Desta Debrata La	205
	6.1	Basic Principles	205
	6.2	Search Strategies	210
		6.2.1 Node Selection	215
		6.2.2 Branch Selection	217
	6.3	A General Branch and Bound Procedure	217
	6.4	Difficult Problems	219
	6.5	Integer Programming Duality and Relaxation	222
	6.6	Lagrangean Decomposition	224
7	Heu	ristic Algorithms	229
	71	Neighborhood Search	230
	7.1 7.2	Simulated Anneoling	230
	7.2 7.2	Tabu Search	230
	1.5 7 1	Constin Alassithma	243
	1.4	Other Any and the	249
	1.5	Other Approaches	230

Part II: N	Network Path	Models		25	9
------------	--------------	--------	--	----	---

1	Tree Networks			261
	1.1	Minin 1.1.1 1.1.2	nal Spanning Trees Definitions and Examples Solution Techniques	261 261 264

	1.2	Extensions of Minimal Spanning Tree Problems	269
		1.2.1 Node-Constrained Minimal Spanning Trees	269
		1.2.2 Edge-Constrained Minimal Spanning Trees	270
		1.2.3 Alternative Objective Functions	272
	1.3	Connectivity and Reliability	273
	1.4	The Steiner Tree Problem	276
2	Sho	rtest Path Problems	283
	2.1	The Problem and its Formulation	283
	2.2	Applications of Shortest Paths	284
		2.2.1 Most Reliable Paths	285
		2.2.2 Equipment Replacement	286
		2.2.3 Functional Approximation	289
		2.2.4 Matrix Chain Multiplications	290
	2.3	Solution Methods	291
		2.3.1 Dijkstra's Method	292
		2.3.2 The Bellman-Ford-Moore Algorithm	295
		2.3.3 The Floyd-Warshall Algorithm	298
	2.4	Extensions of the Basic Problem	303
		2.4.1 The k-Shortest Paths Problem	303
		2.4.2 The Minimum Cost-to-Time Ratio Problem	309
		2.4.3 The Resource-Constrained Shortest Path Problems	311
3	Trav	veling Salesman Problems and Extensions	315
	3.1	The Problem and its Applications	315
		3.1.1 Applications	316
		3.1.2 Integer Linear Programming Formulations	319
	3.2	Exact Algorithms	322
	3.3	Heuristic Algorithms	329
	3.4	Vehicle Routing Problems	333
4	Arc	Routing	343
	<i>A</i> 1	Fuler Granks and Cycles	211
	4.1 1 2	Constructing Fularian Granhs	344
	4.2	Constructing Europhams	247
	4.5 1 1	The Canaditated Arc Routing Broblem	356
	4.4	The Capachated Are Routing Frooten	550

Part III: Network Flow and Network Design Models 359				
1	Basi	c Principles of Network Models		
	1.1 1.2 1.3 1.4	The Problem and its Formulation361Transformations of Flow Problems364Duality and Optimality Conditions367Some Fundamental Results370		
2	Арр	lications of Network Flow Models		
	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 	Building Evacuation377Flow Sharing Problems379A Worker Allocation Problem382Airline Crew Assignment384Allocation of Representatives to Committees386Computer Program Testing389Distributed Computing391Matrix Balancing Problems393Matrix Rounding Problems395		
3	Netv	etwork Flow Algorithms		
	3.1 3.2 3.3	Maximal Flow Algorithms3993.1.1 The Method of Ford and Fulkerson3993.1.2 Karzanov's Preflow Algorithm406Feasible Flow Problems412Cost-Minimal Flow Problems4163.3.1 An Augmenting Path Construction Algorithm4163.3.2 The Primal Improvement Algorithms of Klein4193.3.3 The Primal-Dual Out-of-Kilter Algorithm4223.3.4 The Network Simplex Method429		
4	Mul	ticommodity Network Flows 435		
	4.1 4.2 4.3	The Model, ist Formulation and Properties435Solution Methods4404.2.1Price-Directive Decomposition4414.2.2Resource Directive Decomposition447Network Design Problems452		

5	Net	works v	vith Congestion	457
	5.1	Syster	n-Optimal and User-Optimal Network Flows	458
	5.2	Solvir	ng Flow Assignment Problem	462
	5.3	Discre	ete Route Assignment	467
	5.4	Netwo	ork Design Problems	470
		5.4.1	Continuous Network Design	471
		5.4.2	Discrete Network Design	474
		5.4.3	Combined Routing and Discrete Link-Size Determination	476

References	, 479	9
------------	-------	---

C 1 ' 4 T 1.	u de la constante de	# 01
Subject Index	******	201