Schedule-Based Modeling of Transportation Networks: theory and applications

Edited by

Nigel H. M. Wilson Department of Civil, and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

and

Agostino Nuzzolo Department of Civil Engineering, "Tor Vergata" University of Rome, Rome, Italy

YA Springer

Contents

xi

GENERAL OVERVIEW

The schedule	e-based modeling of transportation systems:	1
Agostino Nu	zzolo Umberto Crisalli	1
1.1	Introduction	1.
1.2	Transit schedule-based modelling	3
1.3	Models for multimodal passenger transport-	
	ation networks	17
1.4	Models for multimodal freight transportation	
	networks	19
1.5	Conclusions	21

TRANSIT NETWORKS MODELS AND APPLICATION

2

Passenger dela	y models for rail networks	27	
Otto A. Nielsen, Alex Landex, Rasmus D. Frederiksen			
2.1.	Introduction	28	
2.2	Models principles	31	
2.3	Implementation of the 3.generation model	41	
2.4	Results on empirical data in the Copenhagen		
	network	42	
2.5	Calculating future passenger delays by simulation	44	
2.6	Conclusions and summary	47	

3		
Multi-day d	ynamic transit assignment	51
Markus Frie	edrich	
3.1	Introduction	51
3.2	Network model	54
3.3	Assignment	57
3.4	Analysis of results	58
3.5	Conclusion	60
4		
Schedule-ba	used dynamic transit assignment	63
Thomas Ha	upt, Klaus Nokel, Uwe Reiter	
4.1	Introduction	63
4.2	Extension to the network model	64

Extension to the network model	04
Extension to analysis procedures	66
Conclusion	72
	Extension to analysis procedures Conclusion

5 T

ial impact of automated data collection systems of	on urban
sport planning	75
Wilson, Jinhua Zhao, Adam Rahbee	
Introduction	76
Public transport agency functions	76
Automated Data Collection Systems	78
ADCS - Potential and Reality	81
CTA rail OD matrix inference and analysis	84
Rail path choice modeling	90
Conclusion	97
	 ial impact of automated data collection systems of sport planning Wilson, Jinhua Zhao, Adam Rahbee Introduction Public transport agency functions Automated Data Collection Systems ADCS - Potential and Reality CTA rail OD matrix inference and analysis Rail path choice modeling Conclusion

6

Using automated fare collection data, GIS, and dynamic schedule queries to improve transit data and transit assignment model 101 *Howard Slavin, Andres Rabinowicz, Jonathan Brandon, Giovanni Flammia, Robert Freimer* 61 Introduction 101

0.1	maoaaction	101
6.2	AFC data processing	104
6.3	Using AFC Data to Improve Transit	
	Assignments	114

7

Large-scale schedule-based transit assignment - further optimization of the solution algorithms 119 *Otto A. Nielsen, Ramsus D. Frederiksen*

iviei	isen, Rumsus D. Frederiksen	
7.1	Introduction	119
7.2	Components of Schedule-Based models	120
7.3	Model platform	127
7.4	Optimization of the solution algorithm	130
7.5	Discussion and conclusion	140

Schedule-base	d transit assignment: new dynamic equilibrium	
model with ve	hicle capacity constraints	145
Natale Papola	, Francesco Filippi, Guido Gentile, Lorenzo M	eschini
8.1	Introduction • •'	146
8.2	Transit network formalization	148
8.3	The Arc Performance Model	151
8.4	The Network Loading Map	156
8.5	The Dynamic User Equilibrium Model	161
8.6	Solution algorithm	162
8.7	Numerical applications	166

9

MILATRAS: a new modeling framework for the transit assignment problem 171

Mohamed Wahba, Amer Shalaby

9.1	Introduction	171
9.2	The complexity of the transit assignment problem	172
9.3	MILATRAS - An integrated modelling	
	framework	173
9.4	Applications	190
~ -		100

9.4Applications1509.5Conclusions192

10

Simulation-based evaluation of Advanced Public Transportation	
Information Systems (APTIS)	
Pierluigi Coppola, Luca Rosati	
10.1 Introduction	195
10.2 Modeling architecture	197
10.3 Simulation laboratory	204
10.4 Case study	209
10.5 Conclusions	213

11

11		
The build-up	of capacity problems during the peak hour	217
Jan-Dirk Schn	nocker, Michael G.H. Bell	
11.1	Introduction	217
11.2	The frequency and Schedule-Based approach	218
11.3	Dynamic capacity constrained transit assignment	223
11.4	London case study	231
1.1.5	Conclusions	236

FREIGHT TRANSPORTATION MODELS AND **APPLICATIONS**

12

14		
Schedule-based passenger	and freight mode choice models	
for ex- urban trips		1
Ennio Cascetta, Vittorio M	Iarzano, Andrea Papola	
12.1 Introduction	n 24	1
12.2 Passenger i	nterurban mode choice models 24	2
12.3 Freight inte	erurban mode choice models 24	4
12.4 Conclusion	s 24	8
13		
A schedule-based methode	ology proposal for Sea Motorways	
feasibility evaluation		51
Dario Aponte, Fedele Iani	10ne, Andrea Papola	
13.1 Introduction	n 25	51
13.2 The metho	dology's phases 25	52
13.3 Supply ana	lysis 25	53
13.4 Demand A	nalysis 25	57

- 13.5 Financial-economic analysis of the service 262 264
- 13.6 Conclusions

14

Estimation of target time distribution for agri-food products by road transport 267 Francesco Russo, Antonino Vitetta, Antonio Comi 14.1 Introduction 267 14.2 State of the art 268 Departure time estimation 14.3 273 Experimentation in a real case 14.4 275 Conclusions 14.5 281

15

A ma	acroscop	ic model of a container terminal based on diach	nronic
netwo	orks		285
Stefa	no de Li	uca, Giulio E. Cantarella, Armando Carteni	
-	15.1	Introduction	285
	15.2	The proposed approach	288
	15.3	Application	304
	15.4	Conclusions	309
Index			311