
L. Ambrosio L. A. Caffarelli Y. Brenier G. Buttazzo C. Villani

Optimal Transportation and Applications

Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 2–8, 2001

Editors: L. A. Caffarelli S. Salsa

Contents

\mathbf{T}	he N	Monge-Ampère Equation and Optimal Transportation,	
ar	ı ele	mentary review	
L_{i}	uis C	Taffarelli	1
1	Opt	imal Transportation	1
2		continuous case:	2
3	The	e dual problem:	3
4	Exis	stence and Uniqueness:	4
5	The	potential equation:	6
6	Son	ne remarks on the structure of the equation	7
o	ptin	nal Shapes and Masses, and Optimal Transportation	
\mathbf{P}	robl	ems	
G	iusep	pe Buttazzo, Luigi De Pascale	11
1	Intr	oduction	11
2	Some classical problems		13
	2.1	The isoperimetric problem	13
	2.2	The Newton's problem of optimal aerodynamical profiles	14
	2.3	Optimal Dirichlet regions	17
	2.4	Optimal mixtures of two conductors	19
3	Mas	ss optimization problems	23
4	Optimal transportation problems		29
	4.1	The optimal mass transportation problem: Monge and	
		Kantorovich formulations	30
	4.2	The PDE formulation of the mass transportation problem	32
5	Rela	ationships between optimal mass and optimal transportation	33
6			35
	6.1		
	6.2	A p-Laplacian approximation	37
	6.3	Optimization of Dirichlet regions	
	6.4		
R	eferei	nces	

VIII Contents

=	tion, dissipative PDE's and functional		
inequalities			
Cedric Villani		53	
Some motivations 5			
A study of fast trend to equilibrium			
3 A study of slow tren	nd to equilibrium	64	
4 Estimates in a mean	n-field limit problem	71	
5 Otto's differential p	oint of view	80	
References		88	
Extended Monge-Ka	antanavich Theory		
		Ω1	
	cs and the Monge-Kantorovich theory		
_	· ·		
	odesics		
	obability measures		
	n result		
	T		
	eat equation		
	ion and Moser's lemma revisited		
	ic functions		
	onic functions		
	al surfaces		
	as a subset of generalized surface theory		
	dratic cost functions		
	d surfaces in \mathbb{R}^5 and Electrodynamics		
	Maxwell equations		
	set of nonlinear Maxwell equations		
	vell-type system		
References		120	
Existence and stabil transportation	lity results in the L^1 theory of optimal		
Luigi Ambrosio, Aldo l	Pratelli	123	
	ity conditions		
	Γ -asymptotic expansions		
	1-dimensional theory		
	transport set		
•			
-	ation of measures		
References	,	152 158	
References		1.7	