Werner Krabs Stefan Wolfgang Pickl

Analysis, Controllability and Optimization of Time-Discrete Systems and Dynamical Games

Contents

Unc	ontrol	led Systems	1				
1.1	1 The Autonomous Case						
	1.1.1	Definitions and Elementary Properties	1				
	1.1.2	Localization of Limit Sets with the Aid of					
		Lyapunov Functions.	6				
	1.1.3	Stability Based on Lyapunov's Method	8				
	1.1.4	Stability of Fixed Points via Linearisation	.13				
	1.1.5	Linear Systems	.16				
	1.1.6	Applications	.21				
1.2	The N	Ion-Autonomous Case	.32				
	1.2.1	Definitions and Elementary Properties	.32				
	1.2.2	Stability Based on Lyapunov's Method	.35				
	1.2.3	Linear Systems	.38				
	1.2.4	Application to a Model for the Process of Hemo-Dialysis	43				
Controlled Systems 47							
2.1	The A	Autonomous Case.	.47				
	2.1.1	The Problem of Fixed Point Controllability	.47				
	2.1.2	Null-Controllability of Linear Systems	.57				
	2.1.3	A Method for Solving the Problem of Null-Controllability	65				
	2.1.4	Stabilization of Controlled Systems	.70				
	2.1.5	Applications	.73				
2.2	The Non-Autonomous Case.						
	2.2.1	The Problem of Fixed Point Controllability.	.80				
	2.2.2	The General Problem of Controllability	.83				
	2.2.3	Stabilization of Controlled Systems	.86				
	2.2.4	The Problem of Reachability.	.89				
Controllability and Optimization 92							
3.1	The C	Control Problem	.93				
3.2	A Gar	A Game Theoretical Solution					

		3.2.1	The Cooperative Case	95			
		3.2.2	The Non-Cooperative Case	99			
		3.2.3	The Linear Case	. 103			
	3.3	Local	Controllability.	106			
	3.4	An E	mission Reduction Model	107			
		3.4.1	A Non-Cooperative Treatment	. 107			
		3.4.2	A Cooperative Treatment	116			
		3.4.3	Conditions for the Core to be Non-Empty.	. 118			
		3.4.4	Further Conditions for the Core to be Non-Empty.	.122			
		3.4.5	A Second Cooperative Treatment.	128			
	3.5	A Dy	namical Method for Finding a Nash Equilibrium	136			
		3.5.1	The Goal-Cost-Game.	. 136			
		3.5.2	Necessary Conditions for a Nash Equilibrium.	. 137			
		3.5.3	The Method.	. 139			
	3.6	Evolu	ition Matrix Games	141			
		3.6.1	Definition of the Game and Evolutionary Stability	141			
		3.6.2	A Dynamical Method for Finding an Evolutionary	1.47			
	~ -		Stable State	. 147			
	3.7	A Ge	eneral Cooperative n-Person Goal-Cost-Game.	151			
		3.7.1	I ne Game.				
		3.1.2	A Cooperative Treatment	152			
		3.7.3	Necessary and Sufficient Conditions for a Stable	152			
	20		Grand Coalition				
	3.8	A C 0	The Come and a First Cooperative Treatment	155			
		2.0.1	Transformation of the Game into a	133			
		3.8.2	Cooperative Come	157			
		282	Sufficient Conditions for a Stable Grand Coalition	159			
		5.0.5 2.8.1	Further Cooperative Treatments	1.00			
		3.0.4	Parato Optima as Cooperative Solutions of the Game	162			
		5.6.5	rateto Optima as Cooperative Solutions of the Game	102			
Α	App	endix	4	167			
	A.I	The C	Core of a Cooperative n-Person Game	167			
	A.2	The C	Core of a Linear Production Game	173			
	A.3	Weak	Pareto Optima: Necessary and Sufficient Conditions	177			
	A.4	Duali	ty	179			
В	Bib	liogra	phical Remarks				
р.(•			107			
keierences.							
Ind	Index						
iiu							
Ab	About the Authors						