Daniel Straumann

## **Estimation in Conditionally Heteroscedastic Time Series Models**

## Contents

| Intr | oduction                                                       | . 1 |
|------|----------------------------------------------------------------|-----|
| 1.1  | A Very Brief History of Financial Time Series.                 | . 1 |
| 1.2  | Contents of the Monograph                                      |     |
|      | 1.2.1 Parameter Estimation in a General Conditionally          |     |
|      | Heteroscedastic Time Series Model                              | 4   |
|      | 1.2.2 Whittle Estimation in GARCH(1,1).                        | .10 |
| 1.3  | Structure of the Monograph                                     |     |
| Son  | ne Mathematical Tools                                          | .13 |
| 2.1  | Stationarity and Ergodicity.                                   | .13 |
| 2.2  | Uniform Convergence via the Ergodic Theorem.                   |     |
|      | 2.2.1 Bochner Expectation                                      | .19 |
|      | 2.2.2 The Ergodic Theorem for Sequences of B-valued            |     |
|      | Random Elements                                                | 22  |
| 2.3  | Matrix Norms                                                   |     |
| 2.4  | Weak Convergence in $C(/f, R^{d'})$                            | .24 |
| 2.5  | Exponentially Fast Almost Sure Convergence                     |     |
| 2.6  | Stochastic Recurrence Equations.                               |     |
| Fina | ancial Time Series: Facts and Models                           | 37  |
| 3.1  | Stylized Facts of Financial Log-return Data.                   |     |
|      | 3.1.1 Uncorrelated Observations.                               |     |
|      | 3.1.2 Time-varying Volatility (Conditional Heteroscedasticity) | 41  |
|      | 3.1.3 Heavy-tailed and Asymmetric Unconditional                |     |
|      | Distribution                                                   | 41  |
|      | 3.1.4 Leverage Effects                                         |     |
| 3.2  | ARMA Models                                                    |     |
| 3.3  | Conditionally Heteroscedastic Time Series Models.              | 48  |
|      | 3.3.1 AGARCH Models                                            |     |
|      | 3.3.2 EGARCH Models                                            | 60  |
| 3.4  | Stochastic Volatility Models.                                  |     |
|      |                                                                |     |

| 37 | <b>~</b> , , |
|----|--------------|
| X  | Contents     |
|    |              |

| 4 | Par                                                  | ameter Estimation: An Overview 63                          |  |  |  |  |  |
|---|------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| • | 4.1                                                  | Estimation for ARMA Processes. 63                          |  |  |  |  |  |
|   | т.1                                                  | 4.1.1 Gaussian Quasi Maximum Likelihood Estimation. 63     |  |  |  |  |  |
|   |                                                      | 4.1.2 Least squares Estimation 68                          |  |  |  |  |  |
|   |                                                      | 4.1.3 Whittle Estimation 69                                |  |  |  |  |  |
|   | 4.2                                                  | Estimation for GARCH Processes. 72                         |  |  |  |  |  |
|   | 4.2                                                  |                                                            |  |  |  |  |  |
|   |                                                      | 4.2.1 Quasi Maximum Likelihood Estimation 73               |  |  |  |  |  |
|   |                                                      | 4.2.2 Whittle Estimation                                   |  |  |  |  |  |
| 5 | Quasi Maximum Likelihood Estimation in Conditionally |                                                            |  |  |  |  |  |
|   |                                                      | eroscedastic Time Series Models: A Stochastic              |  |  |  |  |  |
|   |                                                      | urrence Equations Approach                                 |  |  |  |  |  |
|   | 5.1                                                  | Overview                                                   |  |  |  |  |  |
|   | 5.2                                                  | Stationarity, Ergodicity and Invertibility 87              |  |  |  |  |  |
|   |                                                      | 5.2.1 Existence of a Stationary Solution                   |  |  |  |  |  |
|   |                                                      | 5.2.2 Invertibility                                        |  |  |  |  |  |
|   |                                                      | 5.2.3 Definition of the Function h^                        |  |  |  |  |  |
|   | 5.3                                                  | Consistency of the QMLE                                    |  |  |  |  |  |
|   | 5.4                                                  | Examples: Consistency                                      |  |  |  |  |  |
|   |                                                      | 5.4.1 EGARCH                                               |  |  |  |  |  |
|   |                                                      | 5.4.2 AGARCH(p,q)                                          |  |  |  |  |  |
|   | 5.5                                                  | The First and Second Derivatives of $h_t$ and $h_t$        |  |  |  |  |  |
|   | 5.6                                                  | Asymptotic Normality of the QMLE                           |  |  |  |  |  |
|   | 5.7                                                  | Examples: Asymptotic Normality                             |  |  |  |  |  |
|   | 3.1                                                  |                                                            |  |  |  |  |  |
|   |                                                      | 5.7.1 AGARCH(p,q)                                          |  |  |  |  |  |
|   | <b>~</b> 0                                           | 5.7.2 EGARCH                                               |  |  |  |  |  |
|   | 5.8                                                  | Non-Stationarities 131                                     |  |  |  |  |  |
|   | 5.9                                                  | Fitting AGARCH(1,1) to the NYSE Composite Data             |  |  |  |  |  |
|   | 5.10                                                 | A Simulation Study                                         |  |  |  |  |  |
| 6 | Ma                                                   | ximum Likelihood Estimation in Conditionally               |  |  |  |  |  |
|   | Het                                                  | eroscedastic Time Series Models                            |  |  |  |  |  |
|   | 6.1                                                  | Consistency of the MLE                                     |  |  |  |  |  |
|   |                                                      | 6.1.1 Main Result                                          |  |  |  |  |  |
|   |                                                      | 6.1.2 Consistency of the MLE with Respect to Student $t_v$ |  |  |  |  |  |
|   |                                                      | Innovations                                                |  |  |  |  |  |
|   | 6.2                                                  | Misspecification of the Innovations Density                |  |  |  |  |  |
|   | ~. <del>_</del>                                      | 6.2.1 Inconsistency of the MLE                             |  |  |  |  |  |
|   |                                                      | 6.2.2 Misspecfication of V in the GARCH(p,q) Model 154     |  |  |  |  |  |
|   | 6.3                                                  | Asymptotic Normality of the MLE                            |  |  |  |  |  |
|   | 6.4                                                  | Asymptotic Normality of the MLE with Respect to Student    |  |  |  |  |  |
|   | 0.7                                                  | $t_{\nu}$ Innovations                                      |  |  |  |  |  |
|   |                                                      | νγ πιποταιτοπο                                             |  |  |  |  |  |

|   |        | Contents                                                                                               | XI           |
|---|--------|--------------------------------------------------------------------------------------------------------|--------------|
| 7 | •      | asi Maximum Likelihood Estimation in a Generalized inditionally Heteroscedastic Time Series Model with |              |
|   |        | vy—tailed Innovations                                                                                  | 169          |
|   | 7.1    | Stable Limits of Infinite Variance Martingale Transforms                                               | 170          |
|   | 7.2    | Infinite Variance Stable Limits of the QMLE                                                            | 172          |
|   | 7.3    | Limit Behavior of the QMLE in GARCH(p,q) with                                                          |              |
|   |        | Heavy-tailed Innovations.                                                                              | 175          |
|   | 7.4    | Verification of Strong Mixing with Geometric Rate of (Y*) in                                           |              |
|   |        | GARCH(p,q).                                                                                            | . 179        |
| 8 | Whit   | tle Estimation in a Heavy-tailed GARCH (1,1) Mode                                                      | <b>l</b> 187 |
|   | 8.1    | Introduction                                                                                           | 187          |
|   | 8.2    | Limit Theory for the Sample Autocovariance Function.                                                   | 189          |
|   | 8.3    | Main Results                                                                                           |              |
|   | 8.4    | Excursion: Yule-Walker Estimation in ARCH(p)                                                           | 194          |
|   | 8.5    | Proof of Theorem 8.3.1                                                                                 | 195          |
|   | 8.6    | Proof of Theorem 8.3.2.                                                                                | . 200        |
| R | eferen | ices                                                                                                   | 215          |

Index 225