Optimal Portfolios with Stochastic Interest Rates and Defaultable Assets

Contents

1	Pre	liminaries from Stochastics
	1.1	Stochastic Differential Equations
	1.2	Stochastic Optimal Control
2	Op	timal Portfolios with Stochastic Interest Rates
	2.1	Introduction
	2.2	Ho-Lee and Vasicek Model
		2.2.1 Bond Portfolio Problem
		2.2.2 Mixed Stock and Bond Portfolio Problem
	2.3	Dothan and Black-Karasinski Model
	2.4	Cox-Ingersoll-Ross Model
	2.5	Widening the Investment Universe
	2.6	Conclusion
3	Ela	sticity Approach to Portfolio Optimization
	3.1	Introduction
	3.2	Elasticity in Portfolio Optimization
	3.3	Duration in Portfolio Optimization
	3.4	Conclusion
	3.5	Appendix93

3 7	A 4 4
X	Contents
/ \	Comunis

4	Bar	rrier Derivatives with Curved Boundaries	99
	4.1	Introduction	99
	4.2	Bjork's Result	100
	4.3	Deterministic Exponential Boundaries.	102
	4.4	Discounted Barrier and Gaussian Interest Rates	
	4.5	Application: Pricing of Defaultable Bonds	110
	4.6	Conclusion.	112
5	Op	timal Portfolios with Defaultable Assets - A Firm	
	Val	ue Approach	
	5.1	Introduction	
	5.2	The Unconstrained Case.	
		5.2.1 Merton Model	
		5.2.2 On the Assumption that Firm Value is Tradable.	122
		5.2.3 Black-Cox Model	125
	5.3	From the Unconstrained to the Constrained Case	138
	5.4	The Constrained Case	143
		5.4.1 Merton Model	
		5.4.2 Black-Cox Model	148
		5.4.3 Generalized Briys-de Varenne Model.	150
	5.5	Conclusion.	162
Ref	feren	ices	165
Ab	brev	viations	171
Not	tatio	ons	173