Bernard Helffer Francis Nier

Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians

Contents

T	Intr	oduction	1		
2	Kohn's Proof of the Hypoellipticity				
		he Hörmander Operators	11		
	2.1	Vector Fields and Hörmander Condition			
	2.2	Main Results in Hypoellipticity			
	2.3	Kohn's Proof	14		
3	Cor	npactness Criteria for the Resolvent			
	of S	Schrödinger Operators	19		
	3.1	Introduction	19		
	3.2	About Witten Laplacians and Schrödinger Operators	20		
	3.3	Compact Resolvent and Magnetic Bottles	22		
4	Glo	Global Pseudo-differential Calculus			
	4.1	The Weyl-Hörmander Pseudo-differential Calculus	27		
	4.2	Basic Properties	29		
		4.2.1 Composition	29		
		4.2.2 The Algebra $\bigcup_{m \in \mathbb{R}} \operatorname{Op} S_{\Psi}^{m} \dots$	30		
		4.2.3 Equivalence of Quantizations	30		
		4.2.4 $L^2(\mathbb{R}^d)$ -Continuity	31		
		4.2.5 Compact Pseudo-differential Operators	31		
	4.3	Fully Elliptic Operators and Beals Type Characterization	31		
	4.4	Powers of Positive Elliptic Operators	34		
	4.5	Comments	37		
	4.6	Other Types of Pseudo-differential Calculus	38		
	4.7	A Remark by J.M. Bony About the Geodesic Temperance	39		
5	An:	alysis of Some Fokker-Planck Operator	43		
•	5.1	Introduction			
	$5.1 \\ 5.2$	Maximal Accretivity of the Fokker-Planck Operator			
	0.4	maximal recipility of the ronner-ranch operator	40		

VIII Contents

		5.2.1 Accretive Operators	43
		5.2.2 Application to the Fokker-Planck Operator	44
	5.3	Sufficient Conditions for the Compactness	
		of the Resolvent of the Fokker-Planck Operator	46
		5.3.1 Main Result	46
		5.3.2 A Metric Adapted to the Fokker-Planck Equation	
		and Weak Ellipticity Assumptions	48
		5.3.3 Algebraic Properties of the Fokker-Planck Operator	52
		5.3.4 Hypoelliptic Estimates: A Basic Lemma	54
		5.3.5 Proof of Theorem 5.8	55
	5.4	Necessary Conditions	
		with Respect to the Corresponding Witten Laplacian	58
	5.5	Analysis of the Fokker-Planck Quadratic Model	59
		5.5.1 Explicit Computation of the Spectrum	60
		5.5.2 Improved Estimates for the Quadratic Potential	62
6	Ret	urn to Equilibrium for the Fokker-Planck Operator	65
	6.1	Abstract Analysis	65
	6.2	Applications to the Fokker-Planck Operator	69
	6.3	Return to Equilibrium Without Compact Resolvent	70
	6.4	On Other Links Between Fokker-Planck Operators	
		and Witten Laplacians	71
	6.5	Fokker-Planck Operators and Kinetic Equations	72
7	Hvi	poellipticity and Nilpotent Groups	73
	7.1	Introduction	73
	7.2	Nilpotent Lie Algebras	73
	7.3	Representation Theory	74
	7.4	Rockland's Conjecture	76
	7.5	Spectral Properties	77
0	ъл.	win al II-m a allimaticiam for Dalamanial	
8		ximal Hypoellipticity for Polynomial Vector Fields and Spectral Byproducts	79
	8.1	Introduction	79
	8.2	Rothschild-Stein Lifting and Towards a General Criterion	
	8.3	Folland's Result	83
	8.4	Discussion on Rothschild-Stein	0.
	0.4	and Helffer-Métivier-Nourrigat Results	85
0	•		
9		Fokker-Planck Operators and Nilpotent Techniques	85
	9.1	Is There a Lie Algebra Approach	or
	0.0	for the Fokker-Planck Equation?	
	9.2	Maximal Estimates for Some Fokker-Planck Operators	91

10	Maximal Microhypoellipticity for Systems
	and Applications to Witten Laplacians 97
	10.1 Introduction
	10.2 Microlocal Hypoellipticity and Semi-classical Analysis 99
	10.2.1 Analysis of the Links
	10.2.2 Analysis of the Microhypoellipticity for Systems 101
	10.3 Around the Proof of Theorem 10.5
	10.4 Spectral By-products for the Witten Laplacians 106
	10.4.1 Main Statements
	10.4.2 Applications for Homogeneous Examples 107
	10.4.3 Applications for Non-homogeneous Examples 110
11	Spectral Properties of the Witten-Laplacians
	in Connection with Poincaré Inequalities
	for Laplace Integrals
	11.1 Laplace Integrals and Associated Laplacians
	11.2 Links with the Witten Laplacians
	11.2.1 On Poincaré and Brascamp-Lieb Inequalities
	11.2.2 Links with Spectra of Higher Order Witten Laplacians . 115
	11.3 Some Necessary and Sufficient Conditions
	for Polyhomogeneous Potentials
	11.3.1 Non-negative Polyhomogeneous Potential Near Infinity . 117
	11.3.2 Analysis of the Kernel
	11.3.3 Non-positive Polyhomogeneous Potential Near Infinity $.119$
	11.4 Applications in the Polynomial Case
	11.4.1 Main Result
	11.4.2 Examples
	11.5 About the Poincaré Inequality for an Homogeneous Potential $.122$
	11.5.1 Necessary Conditions
	11.5.2 Sufficient Conditions
	11.5.3 The Analytic Case
	11.5.4 Homotopy Properties
12	Semi-classical Analysis for the Schrödinger Operator:
	Harmonic Approximation
	12.1 Introduction
	12.2 The Case of Dimension 1
-	12.3 Quadratic Models
	12.4 The Harmonic Approximation, Analysis in Large Dimension 139
13	Decay of Eigenfunctions and Application to the Splitting 147
	13.1 Introduction
	13.2 Energy Inequalities
	13.3 The Agmon Distance
	13.4 Decay of Eigenfunctions for the Schrödinger Operator 149

	Contents
A	

	13.5 Estimates on the Resolvent
	13.6 WKB Constructions
	13.7 Upper Bounds for the Splitting
	Between the Two First Eigenvalues
	13.7.1 Rough Estimates
	13.7.2 Towards More Precise Estimates
	13.7.3 Historical Remarks
	13.8 Interaction Matrix for the Symmetric Double Well Problem157
14	Semi-classical Analysis and Witten Laplacians:
	Morse Inequalities
	14.1 De Rham Complex
	14.2 Useful Formulas
	14.3 Computation of the Witten Laplacian
	on Functions and 1-Forms
	14.4 The Morse Inequalities
	14.5 The Witten Complex
	14.6 Rough Semi-classical Analysis of the Witten Laplacian 170
15	Semi-classical Analysis and Witten Laplacians:
	Tunneling Effects
	15.1 Morse Theory, Agmon Distance and Orientation Complex 173
	15.1.1 Morse Function and Agmon Distance
	15.1.2 Generic Conditions on Morse Functions
	15.1.3 Orientation Complex
	15.2 Semi-classical Analysis of the Witten Laplacians
	15.2.1 One Well Reference Problems
	15.2.2 Improved Decay
	15.2.3 An Adapted Basis
	15.2.4 WKB Approximation
	15.3 Semi-classical Analysis of the Witten Complex 179
16	Accurate Asymptotics
	for the Exponentially Small Eigenvalues of $\Delta_{f,h}^{(0)}$
	16.1 Assumptions and Labelling of Local Minima
	16.2 Main Result
	16.3 Proof of Theorem 16.4 in the Case of Two Local Minima 184
	16.4 Towards the General Case
17	Application to the Fokker-Planck Equation
18	Epilogue
Rei	ferences
ind	lex