Takehisa Onisawa · Janusz Kacprzyk Editors

Reliability and Safety Analyses under Fuzziness

With 106 Figures

Physica-Verlag

A Springer-Verlag Company

Table of Contents

Foreword M. Sugeno	v
1. INTRODUCTORY SECTIONS	
Foundations of reliability and safety J. Karpiński, W. Lewin and J. Rudnicki	3
Brief introduction to fuzzy sets M. Fedrizzi and J. Kacprzyk	31
2. RELIABILITY AND SAFETY ANALYSES UNDER FUZZINESS: GENERAL ISSUES	
System reliability from the viewpoint of evaluation and fuzzy sets theory approach T. Onisawa	43
Issues in possibilistic reliability theory B. Cappelle and E.E. Kerre	61
Coherent systems in profust reliability theory KY. Cai, ChY. Wen and ML. Zhang	81
The usefulness of complete lattices in reliability theory J. Montero, B. Cappelle and E.E. Kerre	95
3. FAULT TREE ANALYSIS USING FUZZY SETS AND POSSIBILITY THEORY	
Multi state fault tree analysis using fuzzy probability vectors and resolution identity K.B. Misra and K.P. Soman	113
Fuzzy fault tree analysis: case studies A.W. Deshpande and P. Khanna	126

ç

6

FAES - Fault analysis expert system M. Schneider and A. Kandel	142
4. LIFE TIME ANALYSIS AND FUZZY SETS	
Reliability estimation based on fuzzy life time data R. Viertl and W. Gurker	153
Lifetime tests for imprecise data and fuzzy reliability requirements O. Hryniewicz	169
5. RELIABILITY AND QUALITY CONTROL IN ENGINEERING SYSTEMS	
Reliability behavior of combined hardware-software systems KY. Cai, ChY. Wen and ML. Zhang	183
An application of fuzzy set theory to reliability analysis: Reliability prediction for equipment using fuzzy inference T. Murata	196
Application of fuzzy relational modelling to industrial product quality control Y. Qian, P.J.C. Tessier and G.A. Dumont	203
An application of fuzzy structural modeling to relation diagram method in quality control S. Nagasawa	217
6. RELIABILITY OF MAN-MACHINE SYSTEMS	
Human reliability analysis with fuzzy integral T. Washio and M. Kitamura	233
Fuzzy reliability analysis of labour (man-machine) systems A. Rotshtein	245
7. SAFETY AND RISK ANALYSES	
Risk index and application of fuzzy logic Ch. Preyssl and Y. Nishiwaki	273
Risk-based ranking in inspection of industrial facilities A.A. Ibrahim and B.M. Ayyub	285

ç

6

VIII

A probabilistic-fuzzy model for seismic hazard D.M. Frangopol and K. Hong	302
Seismic reliability analysis of existing structures based on fuzzy probability H. Furuta, M. Sugito, S. Yamamoto and N. Shiraishi	326
Combined probability-possibility evaluation theory for structural reliability H. Kawamura and Y. Kuwamoto	341
Reliability assessment using variance reduction techniques based on fuzzy system performance KL. Lai and B.M. Ayyub	358

IX

,

ç

ΰ