Kurt Marti

Stochastic Optimization Methods

1

2

Second edition

Contents

Part I Basic Stochastic Optimization Methods

1	Dec	ision/	Control Under Stochastic Uncertainty	3
	1.1	Introc	luction	3
	1.2	Deter	ministic Substitute Problems: Basic Formulation	5
		1.2.1	Minimum or Bounded Expected Costs	6
		1.2.2	(Worst Case)	8
2	Det	ermin	istic Substitute Problems in Optimal Decision	
	Une	der Ste	ochastic Uncertainty	9
	2.1	Optin	num Design Problems with Random Parameters	9
		2.1.1	Deterministic Substitute Problems in Optimal	
			Design	13
		2.1.2	Deterministic Substitute Problems in Quality	
			Engineering	16
	2.2	Basic	Properties of Substitute Problems	18
	2.3	Appro	oximations of Deterministic Substitute Problems	
		in Op	timal Design	19
		2.3.1	Approximation of the Loss Function	20
		2.3.2	Regression Techniques. Model Fitting, RSM	22
		2.3.3	Taylor Expansion Methods	26
	2.4	Appli	cations to Problems in Quality Engineering	29
	2.5	Appro	eximation of Probabilities: Probability Inequalities	30
		2.5.1	Bonferroni-Type Inequalities	31
		2.5.2	Tschebyscheff-Type Inequalities	32
		2.5.3	First Order Reliability Methods (FORM)	37
			<u>م</u>	

Part II Differentiation Methods

3	Dif	ferentiation Methods for Probability and Risk Functions 4	13
	3.1	Introduction	13
	3.2	Transformation Method: Differentiation by Using an Integral	
		Transformation	16
		3.2.1 Representation of the Derivatives by Surface Integrals. 5	51
	3.3	The Differentiation of Structural Reliabilities	54
	3.4	Extensions	57
		3.4.1 More General Response (State) Functions 5	57
	3.5	Computation of Probabilities and its Derivatives	
		by Asymptotic Expansions of Integral of Laplace Type 6	52
		3.5.1 Computation of Probabilities of Structural Failure	
		and Their Derivatives	52
		3.5.2 Numerical Computation of Derivatives	
		of the Probability Functions Arising in Chance	
		Constrained Programming	i6
	3.6	Integral Representations of the Probability Function	
		P(x) and its Derivatives	/2
	3.7	Orthogonal Function Series Expansions I: Expansions	
		in Hermite Functions, Case $m = 1$	'5
		3.7.1 Integrals over the Basis Functions and the Coefficients	
		of the Orthogonal Series	'9
		3.7.2 Estimation/Approximation of $P(x)$ and its Derivatives . 8	32
		3.7.3 The Integrated Square Error (ISE) of Deterministic	
		Approximations	38
	3.8	Orthogonal Function Series Expansions II: Expansions	
		in Hermite Functions, Case $m > 1$	39
	3.9	Orthogonal Function Series Expansions III: Expansions	
		in Trigonometric, Legendre and Laguerre Series)1
		3.9.1 Expansions in Trigonometric and Legendre Series 9)2
		3.9.2 Expansions in Laguerre Series)2
		• 0	

Part III Deterministic Descent Directions

4	Det	erministic Descent Directions and Efficient Points 95
	4.1	Convex Approximation
		4.1.1 Approximative Convex Optimization Problem
	4.2	Computation of Descent Directions in Case of Normal
		Distributions101
		4.2.1 Descent Directions of Convex Programs
		4.2.2 Solution of the Auxiliary Programs
	4.3	Efficient Solutions (Points)
		4.3.1 Necessary Optimality Conditions Without Gradients 116

	4.3.2 Existence of Feasible Descent Directions
	in Non-Efficient Solutions of (4.9a), (4.9b) 117
4.4	Descent Directions in Case of Elliptically Contoured
	Distributions
4.5	Construction of Descent Directions by Using Quadratic
	Approximations of the Loss Function

Part IV Semi-Stochastic Approximation Methods

e

5	RS	M-Bas	ed Stochastic Gradient Procedures
	5.1	Intro	luction
	5.2	Gradi	ent Estimation Using the Response Surface
		Meth	odology (RSM)
		5.2.1	The Two Phases of RSM
		5.2.2	The Mean Square Error of the Gradient Estimator 138
	5.3	Estim	ation of the Mean Square (Mean Functional) Error142
		5.3.1	The Argument Case
		5.3.2	The Criterial Case
	5.4	Conve	ergence Behavior of Hybrid Stochastic Approximation
		Metho	ods
		5.4.1	Asymptotically Correct Response Surface Model 148
		5.4.2	Biased Response Surface Model
	5.5	Conve	ergence Rates of Hybrid Stochastic Approximation
		Proce	dures
		5.5.1	Fixed Rate of Stochastic and Deterministic Steps158
		5.5.2	Lower Bounds for the Mean Square Error
		5.5.3	Decreasing Rate of Stochastic Steps
6	Sto	chasti	c Approximation Methods with Changing
	Err	or Va	riances
	6.1	Intro	luction
	6.2	Soluti	on of Optimality Conditions
	6.3	General Assumptions and Notations	
		6.3.1	Interpretation of the Assumptions
		6.3.2	Notations and Abbreviations in this Chapter
	6.4	Prelin	ninary Results
		6.4.1	Estimation of the Quadratic Error
		6.4.2	Consideration of the Weighted Error Sequence
		6.4.3	Further Preliminary Results
	6.5	Gener	al Convergence Results
		6.5.1	Convergence with Probability One
		6.5.2	Convergence in the Mean
		6.5.3	Convergence in Distribution
	6.6	Realiz	vation of Search Directions Y_n
		6.6.1	Estimation of G^*

	6.6.2	Update of the Jacobian
	6.6.3	Estimation of Error Variances
6.7	Realiz	ation of Adaptive Step Sizes
	6.7.1	Optimal Matrix Step Sizes
	6.7.2	Adaptive Scalar Step Size
6.8	A Spe	cial Class of Adaptive Scalar Step Sizes
	6.8.1	Convergence Properties
	6.8.2	Examples for the Function $Q_n(r) \dots 241$
	6.8.3	Optimal Sequence (w_n)
	6.8.4	Sequence (K_n)

Part V Reliability Analysis of Structures/Systems

7	Computation of Probabilities of Survival/Failure			
	by 1	Means	of Piecewise Linearization of the State	
	Fur	ction .		253
	7.1	Introc	duction	253
	7.2	The S	State Function s^*	256
		7.2.1	Characterization of Safe States	258
	7.3	Proba	ability of Safety/Survival	259
	7.4	Appro	Distinction I of p_s, p_f : FORM	262
		7.4.1	The Origin of \mathbb{R}^{ν} Lies in the Transformed	
			Safe Domain	262
		7.4.2	The Origin of \mathbb{R}^{ν} Lies in the Transformed Failure	
			Domain	266
		7.4.3	The Origin of \mathbb{R}^{ν} Lies on the Limit State Surface	268
		7.4.4	Approximation of Reliability Constraints	269
	7.5	Appro	eximation II of p_s, p_f : Polyhedral Approximation	
		of the	Safe/Unsafe Domain	270
		7.5.1	Polyhedral Approximation	273
	7.6	Comp	outation of the Boundary Points	279
		7.6.1	State Function s* Represented by Problem A	280
		7.6.2	State Function s^* Represented by Problem B	280
	7.7	Comp	outation of the Approximate Probability Functions	282
		7.7.1	Probability Inequalities'	282
		7.7.2	Discretization Methods	289
		7.7.3	Convergent Sequences of Discrete Distributions	293

Part VI Appendix

A	Seq	uences, Series and Products	301
	A.1	Mean Value Theorems for Deterministic Sequences	301
	A.2	Iterative Solution of a Lyapunov Matrix Equation	309

÷

В	Cor	Convergence Theorems for Stochastic Sequences				
	B.1	A Convergence Result of Robbins-Siegmund				
		B.1.1 Consequences				
	B.2	Convergence in the Mean				
	B.3	The Strong Law of Large Numbers for Dependent Matrix				
		Sequences				
	B.4	A Central Limit Theorem for Dependent Vector Sequences319				
\mathbf{C}	Тоо	ls from Matrix Calculus				
	C.1	Miscellaneous				
	C.2	The v. Mises-Procedure in Case of Errors				
Re	feren	ces				
Ind	ex					

ļ

р 4