Yoshio Sone

Kinetic Theory and Fluid Dynamics

Birkhäuser Boston • Basel • Berlin

Contents

	เล	

	T .		
1	Intro	duc	tion

2 Boltzmann Equation

	2.2	Boltzmann equation
	2.3	Conservation equations
	2.4	Maxwell distribution (Equilibrium distribution)
	2.5	Mean free path
	2.6	Boundary condition
		2.6.1 Simple boundary
		2.6.2 Interface
	2.7	H theorem
	2.8	Model equation
	2.9	Nondimensional expressions I
	2.10	Nondimensional expressions II
		Linearized Boltzmann equation
		Boltzmann equation in the cylindrical and spherical coordinate
		systems
3	Line	ear Theory – Small Reynolds Numbers
	3.1	Problem
	3.2	Grad-Hilbert solution and fluid-dynamic-type equations
	3.3	Stress tensor and heat-flow vector of the Grad–Hilbert solution
	3.4	Analysis of the Knudsen layer
	3.5	Slip condition and Knudsen-layer correction
		3.5.1 On a simple solid boundary
		3.5.2 On an interface of a gas and its condensed phase with
		evaporation or condensation
	3.6	
	0.0	Determination of macroscopic variables
	3.7	Discontinuity of the velocity distribution function and S layer .
		-

Velocity distribution function and macroscopic variables . . .

		Applications 3.11.1 Thermal cro 3.11.2 Thermal-str	symptotic theory	6 6	
			lge flow		
			oresis		
			ompressor		
	.•		mperature-gradient phenomenon		
4	Wea	ıkly Nonlinear Tl	heory – Finite Reynolds Numbers	88	
	4.1				
	4.2				
	4.3		e equations		
	4.4		lysis		
	4.5	-	Knudsen layer		
	1.0	=	e solid boundary		
			face of a gas and its condensed phase		
	4.6		nacroscopic variables		
	$\frac{4.7}{4.7}$				
	4.8		d energy transfers on a closed body		
	4.9		symptotic theory and a comment on	100	
	1.0		problem	100	
	4 10				
	1.10		problem of evaporation and condensation		
		4.10.2 Evaporation	a and condensation around a cylindrical condensed phase		
		4.10.3 The differen	ace of the temperature field for the S expansion incompressible Navier–Stokes set in	110	
		a time-depe	endent problem	119	
5		linear Theory I - Ghost Effect	- Finite Temperature Variations	123	
	5.1				
	5.2				
	5.3		e equations		
	5.4		slip condition		
	5.5		nacroscopic variables		
	5.6			140	
	5.0	Ghost effect: Incompleteness of the system of the classical gas dynamics			
				140	
			hermal-stress flow and inappropriateness	140	
			conduction equation		
			in the continuum world		
			on the Navier-Stokes set of equations		
			examples		
		5.6.5 Supplement	ary discussion	157	

Contents vii

	5.7	Half-space problem of evaporation and condensation	160
6	Noi	alinear Theory II – Flow with a Finite Mach Number	
		und a Simple Boundary	167
	6.1	Problem	167
	6.2	Hilbert solution	168
	6.3	Viscous boundary-layer solution	
	6.4	Knudsen-layer solution and slip condition	185
	6.5	Connection of Hilbert and viscous boundary-layer solutions	
	6.6	Recipe for construction of solution	
	6.7	Discussions	
7	Nor	nlinear Theory III – Finite Speed of Evaporation	
			203
	7.1	Problem	203
	7.2	Hilbert solution	204
	7.3	Knudsen layer	206
	7.4	Half-space problem of evaporation and condensation	209
	7.5	System of equations and boundary conditions in the continuum	
		limit	213
	7.6	Generalized kinetic boundary condition	216
	7.7	Boundary-condition functions $h_1(M_n), h_2(M_n), F_s(M_n, \overline{M}_t, T/T_w)$,
		and $F_b(M_n, \overline{M}_t, T/T_w)$	220
	7.8	Applications	
		7.8.1 Two-surface problem of evaporation and condensation	225
		7.8.2 Evaporating flow from a spherical condensed phase into a	
		vacuum	226
		7.8.3 Evaporating flow from a cylindrical condensed phase into	
		a vacuum	231
8		rcation of Cylindrical Couette Flow with Evaporation	
	and		235
	8.1	Problem	
	8.2	Solution type I	
		8.2.1 Analysis	
		8.2.2 Solution	
	8.3	Solution type II	
	8.4		
	8.5	Discussions for the other parameter range	
	8.6	Concluding remark and supplementary comment	253
A		· · · ·	257
	A.1	Formal derivation of the Boltzmann equation from the	~=-
			257
	A.2		269
	A.3	Derivation of the Stokes set of equations	271

	A.5 A.6 A.7 A.8 A.9	Linear integral equations $\hat{J}(\hat{f}_{h0}, \hat{f}_{hm}) = Ih_{hm}, \ \hat{J}(\hat{f}_{SB0}, \hat{f}_{SBm}) = Ih_{SBm}, \text{ etc.} \dots \dots$	
В	Sph	erically Symmetric Field of Symmetric Tensor 30	01
	B.1	Problem	01
	B.2		02
	B.3	$T_I(\zeta_i)$ at an arbitrary point	04
		B.3.1 Preparation	
			06
			11
	B.4	Applications	
		B.4.1 Definite integral $\iiint_{C} \zeta_{i_1} \cdots \zeta_{i_{2S}} \exp(-\zeta^2) d\zeta_1 d\zeta_2 d\zeta_3 \dots 3$	12
		B.4.2 Axially symmetric field	13
\mathbf{C}	Kine	etic-Equation Approach to Fluid-Dynamic Equations 31	15
	C.1	- · · · · · · · · · · · · · · · · · · ·	15
	C.2	Exact kinetic-equation approach	16
	C.3	Discussion on numerical systems	
Bi	bliog	graphy 32	27
T.	dor	9 /	1 12