Deep Space Flight and Communications

Exploiting the Sun as a Gravitational Lens

Published in association with **Praxis Publishing** Chichester, UK

ŝ.

Contents

Preface	xiii
Preface to earlier works	xv
Acknowledgments	xix
Foreword	xxi
List of figures	xxiii
List of tables	xxvii
List of abbreviations and acronyms	xxix
A brief overview of the Sun as a gravitational lens	xxxi

•

• • •		space missions to the sun's gravity locus (550 to 1,000 AU).	1
1	So n	nuch gain at 550 AU	3
	1.1	Introduction	3
	1.2	The minimal focal distance of 550 AU for electromagnetic waves	4
	1.3	The (antenna) gain of the gravitational lens of the Sun	7
	1.4	The combined, total gain upon the FOCAL spacecraft	9
	1.5	The image size at the spacecraft distance z	9
	1.6	Requirements on the image size and antenna beamwidth at the	
		spacecraft distance z	10
	1.7	Angular resolution at the spacecraft distance z	11
	1.8	Spatial resolution at spacecraft distance z	14
	1.9	References	14

2	Scien	ntific investigations along the way to 550 AU 1	7
	2.1	Introduction	ι7
	2.2	Visible and infrared stellar parallaxes 1	8
		2.2.1 Uncertainty in the expansion rate of the Universe 1	8
		2.2.2 Age of the Galaxy 1	9
		2.2.3 Galactic structure	9
		2.2.4 Stellar evolution	20
		2.2.5 Targets of opportunity	22
	2.3	Astrophysics, astronomy, and cosmology	22
		2.3.1 Interstellar gases 2	22
		2.3.2 Astronomy	24
		2.3.3 Cosmology	25
		2.3.4 Solar system studies	26
	2.4	Snace plasma physics	26
		2.4.1 Dust	27
		2.4.2 Plasma and energetic particle distributions	28
		2.4.3 Low-energy cosmic rays	28
		244 Magnetic field morphology	28
		2.4.5 Plasma waves	90
	25	Science instrumentation	,9
	2.5	References 2	.) 20
	2.0		<i>,</i> 0
3	Mag	nifying the nearby stellar systems	33
	3.1	Introduction	33
	3.2	Directions of exit from the solar system for FOCAL probes to magnify nearby stellar systems	33
	33	Keplerian theory of simple hyperbolic flybys	36
	3.5	The flyby of the Sun performed by the FOCAL spacecraft	13
	25	Paferences	15
	5.5	Noronous	,,

4	Astro	dynamics to exit the solar system at the highest speed	47
	4.1	Introduction	47
	4.2	A Theorem by Carles Simò	47
		4.2.1 Elementary background (planar problem)	48
		4.2.2 Optimization of a single Jupiter flyby	49
		4.2.3 Two optimized Jupiter flybys plus one intermediate Sun	۲.
		flyby	50
	4.3	A chemically powered close-Sun flyby?	51
	4.4	Theory of the Sun flyby enhanced by a perihelion boost	52
	4.5	Determining the perihelion boost by knowing the target star, the	
		time to get to 550 AU, and the Sun approach	53
	4.6	References	57

5	SET	and the FOCAL space mission
	5.1	Introduction
	5.2	The narrowband assumption in SETI
	5.3	A short introduction to the KLT
	5.4	Mathematics of the KLT
	5.5	KLT for SETI
	5.6	Conclusion: advantages of the KLT for the FOCAL space mission
	5.7	References

5.1	Introduction
6.2	Only two types of SETI searches from the Earth up to 2001
	6.2.1 Introduction
	6.2.2 Background
	6.2.3 Searches
	6.2.4 Targeted search
	6.2.5 All-sky survey
	6.2.6 Common requirements
6.3	GL-SETI: namely, SETI searches from the Earth by exploiting the
	gravitational lenses of other stars
	6.3.1 A third strategy
	6.3.2 Summary
6.4	Maccone's equation relating to (1) magnification of a lensing star,
	(2) distance of the ET transmitter, and (3) power of the ET
	transmitter
6.5	Sun gravity lens and SETV: the Search for ExtraTerrestrial
	Visitation
66	References

The g	gravitational lenses of Alpha Centauri A, B, C and of Barnard's Star	
7.1	Introduction	
7.2	The Sun's gravity + plasma lens as a model for the nearby stars.	
7.3	Assumed data about Alpha Centauri A, B, C and Barnard's Star	
7.4	Gravitational lens of the naked Sun	
7.5	Gravitational lens of the naked Alpha Centauri A	
7.6	Gravitational lens of the naked Alpha Centauri B	
7.7	Gravitational lens of the naked Alpha Centauri C (Proxima)	
7.8	Gravitational lens of the naked Barnard's Star	
7.9	Conclusions	
7.10	Acknowledgments	
7.11	References	

8	The	Coronal Plasma "pushing" the focus of the gravity + plasma lens far	
	beyou	nd 550 AU	11
	8.1	Introduction	11
	8.2	The refraction of electromagnetic waves in the Sun Coronal	
		Plasma	11
	8.3	Summary of the Sun pure gravity (naked Sun) light-bending	
		theory	11
	8.4	Gravity + plasma lens of the Sun: focal axis intercept for any ray	
		passing at distance b from the Sun	11
	8.5	Asymptotic $(z \rightarrow \infty)$ straight light path	12
	8.6	The three approximations to the Sun's (gravity+plasma) lens: "close-Sun", "mid-distance", and "at-infinity" (L, K, and F	10
	~ -	Corona, respectively)	12
	8.7	Focal distance vs. height and minimal focal distance for any	10
	0.0	assigned frequency.	12
	8.8	The two caustics of the (gravity + plasma) lens of the Sun	13
	8.9	Observing frequencies for the "close-Sun", "mid-distance", and	
	0.10	"at-infinity" approximations	13
	8.10	References	13
9	NAS Back	A's Interstellar Probe (ISP: 2010–2070?) and the Cosmic Microwave ground (CMB)	13
	9.1	Introduction	13
	9.2	NASA's Interstellar Probe (ISP) and its long flight: 2010 to	
		2055	13
	9.3	Looking at the 2.728 K Cosmic Microwave Background through	
		the Sun's gravity lens by virtue of NASA's Interstellar Probe (ISP)	13
	9.4	The effective minimal focal distance for the gravity + plasma lens	
		looking at the 2.7 K Cosmic Microwave Background is 763 AU,	
		which NASA's Interstellar Probe will reach in 2055	14
	9.5	Improving COBE's angular resolution by nine orders of magni-	
		tude by looking at the 2.7K Cosmic Microwave Background by	
	0.6	virtue of NASA's Interstellar Probe	14
	9.6	Conclusions	14
	9.7	Acknowledgments	14
	9.8	References	14
PA	RT II	KLT-optimized telecommunications	14
10	A sin	nple introduction to the KLT	15
	10.1	Introduction	15
	10.2	A bit of history	15

10.4	A heuristic derivation of the KL expansion	152
10.4	The KLT milds the dest dasis (eigen-dasis) in the finder space	155
10.5	spanned by the eigenfunctions of the autocorrelation of $X(t)$	155
10.5	The VLT, just a linear transformation in the LUlhart areas	157
10.0	A buselethrough shout the KLT: "The Final Variance theorem"	150
10.7	A breakinfough about the KL1: The Final variance theorem .	139
10.8	BAM ("Bordered Autocorrelation Method") to find the KL1 of	1.00
10.0	stationary processes only	162
10.9	Developments in 2007 and 2008	168
10.10	KLT of stationary white noise	169
10.11	LET of an EI sinusoidal carrier buried in white, cosmic noise .	170
10.12	2 Analytic proof of the BAM-KLT	172
10.11	3 KLT signal-to-noise (SNR) as a function of the final T, eigenvalue	. – .
	index <i>n</i> , and alien frequency ν	174
10.14	How to eavesdrop on alien chat	175
10.13	5 Conclusions	176
10.10	5 Acknowledgments	177
10.1	7 References	177
10.18	3 Annotated bibliography	177
KLT	of radio signals from relativistic spaceships in uniform and	101
decel		181
11.1		181
11.2	Uniform motion	- 185
113		100
11.5	Decelerated motion	188
11.4	Checking the KLT of decelerated motion by Matlab simulations	188 194
11.4 11.5	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in	188 194
11.4 11.5	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195
11.4 11.5 11.6	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195
11.4 11.5 11.6	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199
11.5 11.4 11.5 11.6 11.7	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	100 188 194 195 199 200
11.3 11.4 11.5 11.6 11.7	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	195 188 194 195 199 200
11.5 11.4 11.5 11.6 11.7 KLT	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	100 188 194 195 199 200 203
11.5 11.4 11.5 11.6 11.7 KLT 12.1	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	100 188 194 195 199 200 203 203
11.5 11.4 11.5 11.6 11.7 KLT 12.1 12.2	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	100 188 194 195 199 200 203 203 203 203
11.5 11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	100 188 194 195 199 200 203 203 203
11.3 11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199 200 203 203 203 203
11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199 200 203 203 203 203 203
11.4 11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3 12.4 12.5	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199 200 203 203 203 203 205 206
11.4 11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3 12.4 12.5	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199 200 203 203 203 203 205 206
11.4 11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3 12.4 12.5	Decelerated motion Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion Independence Day movie: exploiting the KLT to detect an alien spaceship approaching the Earth in decelerated motion References Of radio signals from relativistic spaceships in hyperbolic motion Introduction Hyperbolic motion Total energy of signals from relativistic spaceships in hyperbolic motion KLT for signals emitted in asymptotic hyperbolic motion Checking the KLT of asymptotic hyperbolic motion by Matlab simulations	188 194 195 199 200 203 203 203 203 205 206 210 211
11.4 11.4 11.5 11.6 11.7 KLT 12.1 12.2 12.3 12.4 12.5 12.6 12.7	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199 200 203 203 203 203 203 205 206 210 211
 11.6 11.6 11.7 KLT 12.1 12.2 12.3 12.4 12.5 12.6 12.7 	Checking the KLT of decelerated motion by Matlab simulations Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion	188 194 195 199 200 203 203 203 203 205 206 210 211

x Contents

12.8 KL expansion for the instantaneous energy of the noise emitted	
by a relativistic spaceship	220
12.9 Conclusion	221
12.10 References	221

13	KLT 13.1	of radio signals from relativistic spaceships in arbitrary motion	223 223
	13.2	Arbitrary spaceship acceleration	225
	+	13.2.1 Relativistic interstellar flight with an arbitrary spaceship	225
		acceleration profile	225
		13.2.2 KL expansion of the Gaussian hoise emitted by a space-	227
		12.2.2 Total poise aparav	227
		13.2.5 Total holse energy	229
	133	Asymptotic arbitrary spaceship acceleration	230
	15.5	13.3.1 Asymptotic motion with arbitrary acceleration	232
		13.3.2 Asymptotic KI expansion for noise	234
		13.3.2 Asymptotic total noise energy	236
		13.3.4 Asymptotic KL expansion for noise instantaneous energy	236
	134	Power-like asymptotic spaceship acceleration	238
	15.1	13.4.1 Asymptotic motion with power-like acceleration	238
		13.4.2 Power-like asymptotic KL expansion for noise	239
		13.4.3 Approximated power-like asymptotic KL expansion for	
		noise	241
		13.4.4 Power-like asymptotic total noise energy	242
		13.4.5 Power-like asymptotic KL expansion for noise instanta-	
		neous energy	243
		13.4.6 Approximated power-like asymptotic KL expansion for	
		noise instantaneous energy	246
	13.5	Conclusion	247
	13.6	References	248
14	Gene	tics aboard relativistic spaceships	249
	14.1	Introduction	249
	14.2	Diffusion partial differential equation for $X(t)$	250
	14.3	First-passage time for $X(t)$	252
	14.4	Relativistic interstellar flight	254
	14.5	Time-rescaled Brownian motion	255
	14.6	Genetics	256
	14.7	Relativistic genetics	258
	14.8	A glance ahead	259
	14.9	References	260

AP	PENDICES	263
A	Engineering tradeoffs for the "FOCAL" spacecraft antenna	263
	Reference	264
B	"FOCAL" Sun flyby characteristics	269
С	Mission to the solar gravitational focus by solar sailing	279
	C.1 Some concepts of solar-sail dynamics	279
	C.2 Example sailcraft for SGF mission	282
	C.3 Trajectory profile for SGF mission	283
	C.4 Conclusions	290
	C.5 References	290
D	"FOCAL" radio interferometry by a tethered system	293
	D.1 A tethered system to get magnified radio pictures of the Galactic	
	center from 550 AU	293
	D.2 References	296
E	Interstellar propulsion by Sunlensing	299
	E.1 Introduction	299
	E.2 Highlights on research areas in interstellar propulsion by	
	Sunlensing	300
	E.3 An example: light from Sirius, naked Sun gravity lens, and	
	relevant solar sail size	301
	E.4 Conclusions	305
	E.5 References	305
F	Brownian motion and its time rescaling.	307
	F.1 Introduction	307
	F.2 Brownian motion essentials	308
	F.3 KLT of Brownian motion	310
	F.4 White noise as the derivative of Brownian motion with respect to	
	time	311
	F.5 Introduction to time rescaling	313
	F.6 The white noise integral and its autocorrelation.	313
	F.7 Time rescaling and Gaussian properties of $X(t)$	315
	F.8 Orthogonal increments for nonoverlapping time intervals.	317
	F.9 An application of the KLT: finding the total energy of $X(t)$	317
	F.10 References	324
G	Maccone First KLT Theorem: KLT of all time-rescaled Brownian motions	325
	G.1 Introduction	325
	G.2 Self-adjoint form of a second-order differential equation	325
	G3 Solution of the integral equation for eigenfunctions	328
	S.s. Solution of the integral equation for eigenfunctions	520

	G.4 G.5	A simpler formula for Bessel function order	334 335
	G.6	References	337
Н	KLT	of $B(t^{2H})$ time-rescaled Brownian motion	339
	H.1	Introduction	339
	H.2	The time-rescaled Brownian motion $B(t^{2H})$	339
	H.3	KL expansion of $B_{PH}(t)$	341
	H.4	Total energy of $B_{PH}(t)$	346
	H.5	References	349
I	Maco	one Second KLT Theorem: KLT of all time-rescaled Brownian	
	motic	ns	351
	I.1	Introduction	351
	I.2	Autocorrelation of any zero-mean square process	351
	I.3	KLT of any zero-mean time-rescaled square process	352
	I.4	KLT of square Brownian motion	356
	I.5	Checking the KLT of the square Brownian motion by Matlab	261
	16	Deferences	261
	1.0		301
J	KLT	of the $B^2(t^{2H})$ time-rescaled square Brownian motion	363
	J.1	Introduction	363
	J.2	Preparatory calculations about $B^2(t^{2\Delta+1})$	366
	J.3	KL expansion of the square process $B^2(t^{2H})$	371
	J.4	Checking the KLT of $B^2(t^{2H})$ by Matlab simulations	373
	J.5	References	374
K	A M	atlab code for KLT simulations	375
	K.1	Introduction	375
	K.2	The main file "Standard_Brownian_Motion_MAIN.m"	375
	K.3	The file "input_data_toggle.m"	377
	K.4	The file "Brownian_Autocorrelation.m"	379
	K.5	The file "process_path.m"	380
	K.6	The file "graphic.m"	380
	K .7	The file "analytic_KLT.m"	382
	K.8	The file "ANALYTIC_KLT_square_brow_motion.m"	385
	K.9	The file "ANALYTIC_KLT_uniform_rel.m"	386
	K.10	Conclusions	389
T 7	l		201
INC	iex.		391