Selected Works of A. N. Kolmogorov

Volume I Mathematics and Mechanics

edited by

V. M. Tikhomirov

 $\mathbf{x}_{1}^{*} = \mathbf{x}_{1}^{*} + \mathbf{x}_{2}^{*}$

Translated from the Russian by V. M. Volosov

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

Contents

Series Editor's Preface
Editor's Foreword
Andrei Nikolaevich Kolmogorov. A brief biography
Preface to the English edition
 A Fourier-Lebesgue series divergent almost everywhere
summation of divergent series
8. On conjugate harmonic functions and Fourier series
9. On the tertium non datur principle
 Introduction (40). I. Formal and intuitionistic points of view (40). II. Axioms of propositional logic (44). III. Particular propositional logic and its domain of applicability (51). IV. Pseudo-truth mathematics (55). V. Applications (60). 10. On convergence of Fourier series (in collaboration with
G.A. Seliverstov)
 11. A Fourier-Lebesgue series divergent of everywhere
13. On operations on sets
14. On the Denjoy integration process
15. On the topological group-theoretic foundation of geometry 97

16.	Studies on the concept of integral	100
	Chapter 1. Introduction	100
	Chapter 2. The first integration theory (Countable partitions)	105
	§1. Definition and introductory remarks (105). §2. Definition and el-	
	ementary properties of the integral (108). §3. Differential equivalence	
	and a second definition of the integral (110). §4. A remark on infi-	
	nite values of the integral (114). §5. Some special cases of integrabil-	
	ity. Semi-additive functions and functions of bounded variation (116).	
	§6. Some results on homogeneous functions (119). §7. Integrals of the	
	type $\int_E f(x)\phi(dE)$ (122). §8. Examples of M-systems (126).	
	Chapter 3. The second integration theory (Finite partitions)	128
	§1. Introductory remarks (128). §2. Decomposable systems (129).	
	§3. On the interrelation between the two methods of integration (132).	
	§4. Examples (137).	
	Appendix 1. The integral as a many-valued function	138
	Appendix 2. On the justification of differentiation on abstract sets .	140
17.	On the notion of mean \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	144
18.	On the compactness of sets of functions in the case of convergence	
	in mean	147
19.	On the interpretation of intuitionistic logic	151
20.	On the foundation of projective geometry	159
21.	On measure theory	161
	Introduction (161). §1. Non-expanding mappings (163). §2. Maximum	
	measure $\overline{\mu}^{k}(E)$ (164). §3. Minimum measure $\underline{\mu}^{k}(E)$ (167). §4. Some	
	special properties of the measure functions $\overline{\mu}^{k}(E)$ and $\underline{\mu}^{k}(E)$ (168).	
	§5. Cases when a linear measure is uniquely defined (170). §6. Measure	
	theory in general metric spaces (172). §7. Uniqueness theorem for	
	point sets in Euclidean spaces and its relation with surface measure	
	theory (173). Appendix. New definition of measure of a linear set	
	(178).	
22.	On points of discontinuity of functions of two variables (in collaboration	
	with I.Ya. Verchenko)	181
	On normability of a general topological linear space	183
24.	Continuation of the study of points of discontinuity of functions of	
	two variables (in collaboration with I.Ya. Verchenko)	187

25.	On the convergence of series in orthogonal polynomials	190
26.	Laplace transformation in linear spaces	194
27.	On the order of magnitude of the remainder term in the Fourier	
	series of differentiable functions	196
	§1. (197). §2. Asymptotic estimation of $C_n^{(p)}$ for $p = 2i + 1$ $(i \ge 0)$	
	(198). §3. Asymptotic estimation of $C_n^{(p)}$ for $p = 2i$ $(i \ge 1)$ (200).	
28.	On the best approximation of functions of a given class	202
29.	On duality in combinatorial topology	206
30.	Homology rings of complexes and locally bicompact spaces	214
	§1. The homology ring of a complex (214). §2. The homology ring of	
	a locally bicompact space (219). §3. The case of two-sided manifolds	
	(219).	
31.	Finite coverings of topological spaces (in collaboration with	
	P.S. Aleksandrov)	221
32.	The Betti groups of locally bicompact spaces	226
33.	Properties of the Betti groups of locally bicompact spaces	229
34.	The Betti groups of metric spaces	232
35.	Relative cycles. The Alexander duality theorem	234
36	. On open mappings	236
37.	. Skew-symmetric forms and topological invariants	239
38.	A study of the diffusion equation with increase in the amount of	
	substance, and its application to a biological problem	
	(in collaboration with I.G. Petrovskii and N.S. Piskunov)	242
39	. A simplified proof of the Birkhoff-Khinchin ergodic theorem	271
	§1. Introduction (271). §2. Reduction to the discrete case (272).	
	§3. Proof of the main theorem (274).	
40	. On inequalities for suprema of consecutive derivatives of an arbitrary	
	function on an infinite interval	277
	\$1.Statement of the problem and results (277)\$2.Sufficiency of cond	i-
	tion (1) (281). §3. The case $k = 1$ (283). §4. Necessity of condition (1)	
	for any n (289).	
41	. On rings of continuous functions on topological spaces (in collaboration	
	with I.M. Gel'fand)	291
	§1. The case of a bicompact space (292)§2. The ring $C'(S)$ in the gener	al
	case (294). §3. The ring $C(S)$ in the general case (295).	

42. Curves in a Hilbert space invariant with respect to a one-parameter	
group of motions	298
43. Wiener spirals and some other interesting curves in a Hilbert space	303
44. Points of local topological character of countably-multiple open	
mappings of compacta	308
45. Local structure of turbulence in an incompressible viscous fluid at very	
large Reynolds numbers	312
46. On the degeneration of isotropic turbulence in an incompressible	
viscous fluid	319
47. Dissipation of energy in isotropic turbulence	324
48. Equations of turbulent motion in an incompressible fluid	328
49. A remark on Chebyshev polynomials least deviating from a given	
function	331
50. On the breakage of drops in a turbulent flow	339
51. On dynamical systems with an integral invariant on a torus	344
52. On the preservation of conditionally periodic motions under small	
variations of the Hamilton function	349
53. The general theory of dynamical systems and classical mechanics	355
Introduction (355). §1. Analytic dynamical systems and their sta-	
ble properties (357). §2. Dynamical systems on a two-dimensional	
torus and some canonical systems with two degrees of freedom (360).	
§3. Are dynamical systems on compact manifolds "in general" tran-	
sitive, and should we regard the continuous spectrum as the "gen-	
eral" case and the discrete spectrum as an "exceptional" case ? (365).	
4. Some remarks on the non-compact case (367). $5.$ Transitive mea-	
sures, spectra, and eigenfunctions of analytic systems (370).	
54. Some fundamental problems in the approximate and exact represent-	,
ation of functions of one or several variables	375
55. On the representation of continuous functions of several variables as	
superpositions of continuous functions of a smaller number of	
variables	378
56. On the representation of continuous functions of several variables as	
superpositions of continuous functions of one variable and addition .	383
§1. Construction of the functions ψ^{pq} (384). §2. Construction of the	
functions χ^q (385).	

х

57. On the linear dimension of topological vector spaces	388
§1. The linear dimension $\delta(E)$ (389). §2. The approximate dimension	
$d_a(E)$ (391).	
58. A refinement of the concept of the local structure of turbulence in	
an incompressible viscous fluid at large Reynolds numbers	393
59. P.S. Aleksandrov and the theory of δs -operations	398
60. A qualitative study of mathematical models of population dynamics	403
§1. Introductory notes (403). §2. Volterra's equations and their gener-	
alization (404). §3. Investigation of the behaviour of solutions of the	
system (4) (405).	
Commentary	410
On the papers on the theory of functions and set theory	
(A.N. Kolmogorov)	410
Trigonometric and orthogonal series (P.L. Ul'yanov)	411
A. Divergence of trigonometric Fourier series (411). B. Divergence	
of orthogonal series (413). C. Convergence of Fourier series (414).	
D. On Fourier-Lebesgue coefficients (416). E. Conjugate functions and	
series (418).	
Descriptive set theory (I.I. Parovichenko)	424
Measure theory and theory of the integral (V.A. Skvortsov)	428
On the paper "Studies on the concept of integral" (428). On the paper	
"On the limits of generalization of the integral" (429). On the paper	
"On the Denjoy integration process" (430). On the paper "On measure	
theory" (430). On the paper "On the notion of the mean" (431).	
Points of discontinuity of functions (E.P. Dolzhenko)	435
Theory of approximation (S.A. Telyakovskii and V.M. Tikhomirov)	436
Inequalities for derivatives (V.M. Tikhomirov and G.G. Magaril-Il'yaev)	442
Rings of continuous functions (E.A. Gorin)	447
Curves in a Hilbert space (Yu.A. Rozanov)	451
On the papers on intuitionistic logic (A.N. Kolmogorov)	451
Intuitionistic logic (V.A. Uspenskii and V.E. Plisko)	452
On the papers on homology theory (A.N. Kolmogorov) $\ldots \ldots \ldots$	466
Homology theory (G.S. Chogoshvili)	467
On the paper "On open mappings" (A.N. Kolmogorov)	476

Topology (A.V. Arkhangel'skii)	476
On the paper "Finite coverings of topological spaces" (476). On the	
paper "On open mappings" (476).	
Axiomatics of projective geometry (A.V. Mikhalev)	479
On the paper on the diffusion equation (A.N. Kolmogorov)	481
The diffusion equation (G.I. Barenblatt)	481
On the papers on turbulence (A.N. Kolmogorov)	487
Turbulence (A.M. Yaglom)	488
On the papers on classical mechanics (A.N. Kolmogorov)	503
Classical mechanics (V.I. Arnol'd)	504
1. The basic problem of dynamics (504). 2. Rigid body and plane-	
toid (504). 3. Limiting degeneration (505). 4. Self-degeneration (506).	
5. Diffusion (506). 6. Measure of the exceptional set (507). 7. Smooth-	
ness (508). 8. Non-Hamiltonian systems (509). 9. Numerical trials	
(510). 10. Exponential instability (510). 11. Exchange, capture, and	
oscillation (512). 12. Spectral properties (513).	
On the papers on superpositions (A.N. Kolmogorov)	518
Superpositions (V.I. Arnol'd)	519
1. Representability theorems (519)§2. Non-representability theorems	S
(520).§3 Hilbert's thirteenth problem (521). 4. The resolvent proble	m
(522). 5. Approximations (523).	
List of works by A.N. Kolmogorov	528