Jacques Besson • Georges Cailletaud • Jean-Louis Chaboche • Samuel Forest

Non-Linear Mechanics of Materials

In cooperation with Marc Blétry

Contents

ij

1	Intro	Introduction				
	1.1	Model	construction	1		
		1.1.1	Models for understanding	2		
		1.1.2	Models for designing	3		
	1.2	Applic	eations to models	4		
2	Gen	eral con	cepts	7		
	2.1	Formu	lation of the constitutive equations	7		
	2.2	Princip	ple of virtual power	8		
	2.3	Therm	odynamics of irreversible processes	10		
		2.3.1	First and second principles of thermodynamics	10		
		2.3.2	Dissipation	11		
		2.3.3	Heat equation	12		
		2.3.4	Linear thermoelasticity	12		
		2.3.5	Nonlinear behavior	14		
	2.4	Main c	class of constitutive equations	17		
		2.4.1	Basic building blocks	17		
		2.4.2	One-dimensional plasticity	18		
		2.4.3	One-dimensional viscoelasticity	22		
		2.4.4	Study of a combined model	24		
		2.4.5	One-dimensional viscoplasticity	25		

•			
	2.4.6	Temperature influence	29
	2.4.7	Summary	29
2.5	Yield o	riteria	29
	2.5.1	Available tools	30
	2.5.2	Criteria without hydrostatic pressure	31
	2.5.3	Criteria involving hydrostatic pressure	33
	2.5.4	Anisotropic criteria	36
2.6	Numer	rical methods for nonlinear equations	37
	2.6.1	Newton-type methods/modified Newton	38
	2.6.2	One unknown case, order of convergence	39
	2.6.3	BFGS method (Broyden-Fletcher-Goldfarb-Shanno)	41
	2.6.4	Iterative method—conjugate gradient	43
	2.6.5	Riks method	44
	2.6.6	Convergence	47
2.7	Numer	ical solution of differential equations	48
	2.7.1	General overview	48
	2.7.2	Runge–Kutta method	49
	2.7.3	heta-methods	51
	2.7.4	Comment	52
2.8	Finite	element	54
	2.8.1	Spatial discretization	54
	2.8.2	Discrete integration method	55
	2.8.3	Discretization of fields of unknowns	55
	2.8.4	Application to mechanics	57
	2.8.5	Finite element discretization of Greenberg's principle	58
	2.8.6	Another presentation of the finite element discretization	61
	2.8.7	Assembly through example	62
	2.8.8	Principle of resolution	64
	2.8.9	Mechanical behavior in the finite element method	65

		y and viscoplasticity	67
3.1	Gener	ality	67
	3.1.1	Strain decomposition	67
	3.1.2	Criteria	68
	3.1.3	Flow rules	68
	3.1.4	Hardening rules	69
	3.1.5	Generalized standard materials	69
3.2	Formu	dation of the constitutive equations	70
	3.2.1	State variables definition	70
	3.2.2	Viscoplasticity	71
	3.2.3	From viscoplasticity to plasticity	72
	3.2.4	Comments on the formulation of the plastic constitutive equations	73
3.3	Flow o	direction associated to the classical criteria	76
	3.3.1	Von Mises criterion	76
	3.3.2	Tresca criterion	77
	3.3.3	Drucker-Prager criterion	77
3.4	4 Expre	ssion of some particular constitutive equations in plasticity	78
	3.4.1	Prandtl–Reuss model	78
	3.4.2	Hencky–Mises model	79
	3.4.3	Prager model	79
3.5	5 Flow	under prescribed strain rate	80
	3.5.1	Case of an elastic-perfectly plastic material	80
	3.5.2	Case of a material with hardening	81
3.0	o Non-a	issociated plasticity	81
3.		inear hardening	
	3.7.1	Kinematics and isotropic hardening	
	3.7.2	Dissipated energy, stored energy	
	3.7.3	Typical results	

Contents

'nί

3.8	Some c	lassical extensions
	3.8.1	Multikinematic
	3.8.2	Modification of the dynamic recovery term
	3.8.3	Other models for progressive deformation 95
	3.8.4	Memory effect
	3.8.5	Hardening followed by softening
	3.8.6	Non-proportional loading
	3.8.7	Anisotropic plastic behavior
3.9	Harden	ing and recovery in viscoplasticity
	3.9.1	Kinematic and isotropic hardening
	3.9.2	Aging
	3.9.3	Strain hardening
3.10	Multim	echanism models
	3.10.1	General formulation
	3.10.2	Multimechanism-multicriteria models
	3.10.3	A single crystal model
	3.10.4	Two mechanisms and two criteria models (2M2C) 108
	3.10.5	Simultaneous plastic and viscoplastic flows
	3.10.6	Two mechanisms and one-criterion models (2M1C) 112
	3.10.7	Compressible materials
3.11	Behavi	or of porous materials
	3.11.1	Presentation of some models
	3.11.2	Yield criterion
	3.11.3	Viscoplasticity
	3.11.4	(Visco)plastic flow
	3.11.5	Evolution of porosity
	3.11.6	Elastic behavior
	3.11.7	Effective plastic deformation, hardening
	3.11.8	Nucleation

			Conten	ts	xiii
		3.11.9	Example		124
4	Intro	duction	to damage mechanics		127
	4.1	Introdu	action		127
	4.2	Notion	s and general concepts		128
		4.2.1	Various kinds of damages		128
		4.2.2	Distinction between deformation, damage, propagation		129
		4.2.3	Damage definitions and measures		131
		4.2.4	Energy dissipated by damage		136
	4.3	Damag	ge variables and state laws		138
		4.3.1	Tensorial nature of the damage variables		138
		4.3.2	Some possible choices for elasticity laws		139
		4.3.3	Effective stress concept		140
	4.4	State a	nd dissipative couplings		147
		4.4.1	Various forms of state coupling		147
		4.4.2	Coupling of dissipations		149
		4.4.3	Some possibilities for the elastic limit criterion		150
		4.4.4	General approach for plasticity/damage coupling		152
		4.4.5	Advantages and drawbacks of both types of equivalence .		155
		4.4.6	Asymptotic behavior near fracture		157
	4.5	Damag	ge deactivation		162
		4.5.1	Deactivation in the isotropic damage case		163
		4.5.2	Difficulties associated with anisotropy		164
		4.5.3	A deactivation criterion that preserves continuity		165
		4.5.4	Consequences for plasticity coupled to damage		168
	4.6	Damag	ge evolution laws		169
		4.6.1	Rate-independent normality law		169

4.6.24.6.3

		4.6.4	Tangent operator	175
		4.6.5	Rate-dependent laws	177
	4.7	Examp	oles of damage models in brittle materials	181
		4.7.1	Concrete	181
		4.7.2	Application to composites	184
		4.7.3	Modeling the ceramic–ceramic composites	187
5	Elen	nents of	microstructural mechanics	195
	5.1	Charac	eteristic lengths and scales in microstructural mechanics	195
		5.1.1	Objectives of heterogeneous materials mechanics and homogenization	195
		5.1.2	Microstructure/RVE/structure	204
		5.1.3	Spatial averages, ensemble averages; equivalent homogeneous medium	205
		5.1.4	Local behavior of phases: status of phenomenology in the mechanics of heterogeneous materials	208
	5.2	Some	homogenization techniques	210
		5.2.1	Averaging procedures	210
		5.2.2	Micromechanical problem; boundary conditions	211
		5.2.3	Hill-Mandel lemma	212
		5.2.4	Periodic case: use of multiscale asymptotic expansions	213
	5.3	Applic	eation to linear elastic heterogeneous materials	214
		5.3.1	Stress-strain concentration problem; effective moduli	214
		5.3.2	Variational formulations; bounds	216
		5.3.3 .	Case of a macro-heterogeneous medium	219
		5.3.4	Statistical methods	221
		5.3.5	Self-consistent and generalized self-consistent schemes	227
	5.4	Some	examples, applications and extensions	229
		5.4.1	Hill's lens representation of bounds	229

	5.4.2	Eshelby problems: elastic inclusion and elastic inhomogeneity	231
	5.4.3	Hashin–Shtrikman bounds (case of a locally and globally isotrop two-phase material)	
	5.4.4	Self-consistent model	234
	5.4.5	Dilute distribution	235
5.5	Homog	genization in thermoelasticity	235
	5.5.1	Given eigenstrain field; residual stresses	235
	5.5.2	Auxiliary problems in thermoelasticity; coupled thermoelasticity	237
5.6	Nonlin	near homogenization	241
	5.6.1	Hill's method in elastoplasticity	242
	5.6.2	Approximations of the self-consistent scheme: Kröner and Berveiller–Zaoui models	243
	5.6.3	Influence of the heterogeneity of plastic strain surrounding the inclusion on the quality of the self-consistent estimate in elastoplasticity	245
	5.6.4	Identification of the stress concentration law	247
	5.6.5	Polycrystal behavior	254
5.7	Comp	utation of RVE	258
	5.7.1	Representative volume element size	260
	5.7.2	A definition of the RVE size	264
	5.7.3	RVE size for bulk copper polycrystals	265
	5.7.4	RVE size for thin polycrystalline copper sheets	268
	5.7.5	Elastoplastic behavior of polycrystalline aggregates	274
5.8	Homog	genization of "coarse grain structures"	275
	5.8.1	An example of inhomogeneous average loading of a unit cell .	276
	5.8.2	Generalized Hill–Mandel condition	278
Inela	astic con	estitutive laws at finite deformation	279
6.1	Geome	etry and kinematics of continuum	279

6

	6.1.1	Observer and change of observer	279
	6.1.2	Objective tensors	280
	6.1.3	Position of the material body	280
	6.1.4	Local placement and metrics	281
	6.1.5	Rates; strain-rate	283
	6.1.6	Objective derivatives	284
	6.1.7	Strain tensors	287
6.2	Sthenic	es and statics of the continuum	290
	6.2.1	The method of virtual power methods; principle of objectivity of stress	290
	6.2.2	Lagrangian formulation of equilibrium	292
	6.2.3	Thermodynamics	294
6.3	Constit	tutive laws	295
	6.3.1	Formulation of constitutive laws	295
	6.3.2	Elasticity	297
	6.3.3	Viscoelasticity	299
	6.3.4	Plastic and viscoplastic fluids	299
	6.3.5	Elastoviscoplasticity	300
6.4	Applic	ation: Simple glide	308
	6.4.1	Rotation of material fibres	308
	6.4.2	Analysis in elasticity and elastoplasticity	309
	6.4.3	Single crystal plasticity	314
6.5	Finite o	deformations of generalized continua	319
	6.5.1	Kinematics of Cosserat continuum	319
	6.5.2	Sthenics	322
	6.5.3	Hyperelasticity	324
	6.5.4	Elastoplasticity	330

				Contents	xvii
	7.1	The m	aterial object		333
	7.2	Examp	oles of implementations of particular models		336
		7.2.1	Introduction		336
		7.2.2	Prandtl–Reuss law		336
	•	7.2.3	Multikinematic law		343
		7.2.4	Porous materials		350
	7.3	Specif	icities related to finite elements		357
		7.3.1	The "volume element" element		357
		7.3.2	Treating incompressibility		358
		7.3.3	Plane stress		361
		7.3.4	Periodic structures		364
		7.3.5	Large deformations		364
		7.3.6	Cosserat elements		369
8	Stra	in locali	zation phenomena		371
	8.1	Bifurc	ation modes in elastoplasticity		371
		8.1.1	Formulation of the boundary value problem		371
		8.1.2	Loss of uniqueness, general bifurcation modes .		373
		8.1.3	Well-posedness of the rate boundary value problinear comparison solid		376
		8.1.4	Existence of velocity gradient discontinuities		377
		8.1.5	Bifurcation analysis in elastoplasticity		380
		8.1.6	Stability		386
		8.1.7	Localization criteria		386
		8.1.8	Numerical simulation of some localization mode plasticity		391
	8.2	Regula	arization methods		395
		8.2.1	Mesh dependence		395
		8.2.2	Cosserat continuum at small deformation		400

o

xviii Non-Linear Mechanics of Materials

	8.2.3	Elastoplastic Cosserat continuum and strain localization phenomena	402
App	endix: N	lotation used	407
A.1	Tensors	s	407
		Contracted product: ., :, ::, etc	407
		Dyadic product: \otimes , $\underline{\otimes}$, etc	407
		Special tensors	408
A.2	Vectors	s, matrices	408
		Contracted products	408
,		Dyadic product	408
A.3	Voigt n	otation	408
		Remarks	409
Bibliogr	aphy		411
Index			431