Anastasios Mallios

Modern Differential Geometry in Gauge Theories

Maxwell Fields, Volume I

Birkhäuser Boston • Basel • Berlin

Contents

H	General Preface	ix
	Preface to Volume I	xi
	Acknowledgements	xv

.

Part I Maxwell Fields: General Theory

1	The	Rudin	nents of Abstract Differential Geometry	3							
	1	The Differential Setting									
		1.1	Logarithmic Derivation	7							
	2	\mathcal{A} -Co	onnections	8							
		2.1	The Classical Case	10							
		2.2	Local Definition of an A-Connection	13							
		2.3	Gauge Transformation	18							
	3	Induc	ced A-Connections	20							
	4	Existence of A-Connections. Criteria of Existence									
	5	The S	Space of A-Connections	30							
	6	Relat	ed A-Connections. Moduli Space of A-Connections	33							
		6.1	Moduli Space	34							
	7	Curv	ature	41							
		7.1	Local Form of the Curvature	44							
		7.2	Transformation Law of Field Strength (Curvature)	46							
	8 Fundamental Identities of the Curvature (Continued). Torsion										
		8.1	Pullback of Curvature	52							
		8.2	Torsion	53							
	9	A-Co	onnections Compatible with A-Metrics	54							
		9.1	Hermitian A-Connections	56							
		9.2	Matrices of A-Metrics	58							
		9.3	Kähler A-Metrics	61							

		9.4	Einstein <i>A</i> -Metrics	62										
		9.5	Lorentz A-Metrics	63										
	10	The H	Hodge *-Operator. Volume Form	64										
2	Ele	mentar	ry Particles: Sheaf-Theoretic Classification, by											
	Spir	n-Strue	cture, According to Selesnick's Correspondence Principle	69										
	1	Preli	minaries. Basic Notions	69										
	2	Class	sification of Elementary Particles, Through Vector Sheaves,											
		Acco	rding to Their Spin-Structures	71										
		2.1	Standard Classification of Elementary Particles by Spin											
			Number	71										
		2.2	Classification of Elementary Particles Through											
			Module-Structures (à la Selesnick)	73										
	3	Quan	tum State Modules	74										
	4	Free	Bosons and Fermions in Terms of Finitely Generated											
		Proje	ctive Modules	79										
	5	Finite	ely Generated Projective Modules and Vector Bundles											
		(Serre	e–Swan Theory)	81										
	6	Vecto	or Sheaves and Elementary Particles (Continued: Selesnick's											
		Corre	espondence)	84										
		6.1	Smooth (\mathcal{C}^{∞} -) Case	89										
	7	Coho	mological Classification of Elementary Particles	91										
		7.1	Vector Sheaves	92										
		7.2	Line Sheaves	95										
		7.3	Elementary Particles	97										
	8	Elem	entary Particles as Principal Sheaves	98										
		8.1	Principal Sheaves	100										
	9	Vector Sheaves Associated with Principal Sheaves and Physical												
		Interp	pretation	102										
		9.1	Physical Applications	109										
		9.2	Interacting Particles	110										
3	Ele	ctroma	gnetism	113										
	1	The I	Electromagnetic Field. The Maxwell Category	114										
	2	Chara	acterization of the Maxwell Group Through Local Data	118										
		2.1	Local Characterization of Maxwell Fields	120										
		2.2	Local Characterization of (Gauge) Equivalent Maxwell Fields	s125										
	3	A Na	tural Fibration	128										
		3.1	The Image of (the Natural Fibration) τ	130										
		3.2	Weil's Integrality Theorem (Again)	132										
		3.3	The Image of the Map τ (Continued)	138										
		3.4	Cohomology Class Associated with the Field Strength of a											
			Maxwell Field (Continued)	142										
	4	The H	Fibration τ as a Group Morphism	147										
	5	Actio	on of $H^1(X, \mathbb{C}^{\bullet})$ on the Maxwell Group $\Phi^1_{\mathcal{A}}(X)^{\nabla}$	152										

*

		5.1 Freeness of the Action of $H^1(X, \mathbb{C}^*)$ on the Maxwell Group 1	.54
		5.2 Transitivity of the Action of $H^1(X, \mathbb{C}^*)$ on the Maxwell	
		Group 1	.57
		5.3 $\Phi^1_A(X)^{\nabla}_R$, as a Principal Homogeneous Space	.64
	6	The Hermitian Counterpart 1	68
		6.1 Action of $H^1(X, S^1)$ on $\Phi^1_A(X)^{\nabla}$ 1	171
		6.2 Hermitian Maxwell Fields 1	72
		6.3 Hermitian Light Bundles 1	175
		6.4 Hermitian Light Bundles over Path-Connected Spaces 1	178
	7	Equivariant Actions of $H^1(X, \mathbb{C}^*)$ (Continued)	81
		7.1 The Kernel of the Map τ	186
		7.2 Hermitian Counterpart (Continued) 1	191
	8	The Maxwell Group $\Phi_A^1(X)^{\nabla}$ as a Central Extension (Continued) 1	192
		8.1 The Hermitian Counterpart (Continued) 1	l 9 4
4	Coh	omological Classification of Maxwell and Hermitian Maxwell	
	Field	ds	197
	1	Hypercohomology with Respect to a (Differential) A-Complex 1	197
		1.1 Sheaf Cohomology 1	197
		1.2 Hypercohomology 2	202
	2	Čech Hypercohomology 2	206
	3	Čech Hypercohomology Relative to a Two-Term A-Complex 2	210
		3.1 Identification of $\check{\mathbb{H}}^1(X, \mathcal{E}^0 \xrightarrow{d^0} \mathcal{E}^1)$ 2	212
	4	Cech Hypercohomology, with Respect to the Two-Term	
		$\mathbb{Z}\text{-Complex } \mathcal{A}^{\bullet} \xrightarrow{\partial} \Omega^{1} \dots \dots \dots \Omega^{2}$	216
		4.1 Characterization of the (Abelian) Čech Hypercohomology	
		Group $\check{\mathbb{H}}^1(X, \mathcal{A}^{\bullet} \xrightarrow{\partial} \Omega^1) \dots 2$	218
	5	Cohomological Wording of the Maxwell Group 2	221
	6	Abstract Maxwell Equations 2	227
	7	The Hermitian Analogue 2	230
5	Geo	ometric Prequantization	233
	1	Symplectic Sheaves 2	233
	2	Prequantizable Symplectic Sheaves	237
	3	The Hermitian Framework	242
	4	Cohomological Classification of (Abstract) Geometric	
		Prequantizations of Hermitian Maxwell Fields with a Given Field	
		Strength	246
	5	Prequantization of Elementary Particles	250
		5.1 Bosonic Case	251
		5.2 The Chern Isomorphism (Continued), and Consequences 2	252
		5.3 Geometric Prequantization of Bosons (Continued)	256
		5.4 Fermionic Case	257
		5.5 Pull-Back of Maxwell Fields	259

w

	5.6	Geom	etric	Prec	luar	tiza	tion	n of	Fer	mio	ons (Con	tinu	ied)	•••	•••	••	267
Reference	es						• • •	•••	•••	• • • •		•••		•••	•••	• • •		273
Index of]	Notation	۱		•••				•••	•••	••••			•••	•••	•••		• •	281
Index										• • • •		•••			•••			289

1