Numerical Methods for Nonsmooth Dynamical Systems

Applications in Mechanics and Electronics

Vincent Acary · Bernard Brogliato

With 81 Figures and 4 Tables
Part I Formulations of Nonsmooth Dynamical Systems

2 Nonsmooth Dynamical Systems: A Short Zoology

2.1 Differential Inclusions

2.1.1 Lipschitzian Differential Inclusions

2.1.2 Upper Semi-continuous DIs and Discontinuous Differential Equations

2.1.3 The One-Sided Lipschitz Condition

2.1.4 Recapitulation of the Main Properties of DIs

2.1.5 Some Hints About Uniqueness of Solutions

2.2 Moreau's Sweeping Process and Unilateral DIs

2.2.1 Moreau's Sweeping Process

2.2.2 Unilateral DIs and Maximal Monotone Operators

2.2.3 Equivalence Between UDIs and other Formalisms

2.3 Evolution Variational Inequalities

2.4 Differential Variational Inequalities

2.5 Projected Dynamical Systems

2.6 Dynamical Complementarity Systems

2.6.1 Generalities

2.6.2 Nonlinear Complementarity Systems

2.7 Second-Order Moreau's Sweeping Process

2.8 ODE with Discontinuities

2.8.1 Order of Discontinuity

2.8.2 Transversality Conditions

2.8.3 Piecewise Affine and Piecewise Continuous Systems

2.9 Switched Systems

2.10 Impulsive Differential Equations

2.10.1 Generalities and Well-Posedness

2.10.2 An Aside to Time-Discretization and Approximation

2.11 Summary

3 Mechanical Systems with Unilateral Constraints and Friction

3.1 Multibody Dynamics: The Lagrangian Formalism

3.1.1 Perfect Bilateral Constraints

3.1.2 Perfect Unilateral Constraints

3.1.3 Smooth Dynamics as an Inclusion

3.2 The Newton–Euler Formalism

3.2.1 Kinematics

3.2.2 Kinetics

3.2.3 Dynamics

3.3 Local Kinematics at the Contact Points

3.3.1 Local Variables at Contact Points

3.3.2 Back to Newton–Euler's Equations

3.3.3 Collision Detection and the Gap Function Calculation
3.4 The Smooth Dynamics of Continuum Media ... 131
 3.4.1 The Smooth Equations of Motion ... 131
 3.4.2 Summary of the Equations of Motion ... 135
3.5 Nonsmooth Dynamics and Schatzman's Formulation 135
3.6 Nonsmooth Dynamics and Moreau's Sweeping Process 137
 3.6.1 Measure Differential Inclusions .. 137
 3.6.2 Decomposition of the Nonsmooth Dynamics 137
 3.6.3 The Impact Equations and the Smooth Dynamics 138
 3.6.4 Moreau's Sweeping Process ... 139
 3.6.5 Finitely Represented \(\mathcal{C} \) and the Complementarity Formulation 141
3.7 Well-Posedness Results ... 143
3.8 Lagrangian Systems with Perfect Unilateral Constraints: Summary 143
3.9 Contact Models ... 144
 3.9.1 Coulomb's Friction ... 145
 3.9.2 De Saxcé's Bipotential Function .. 148
 3.9.3 Impact with Friction ... 151
 3.9.4 Enhanced Contact Models ... 153
3.10 Lagrangian Systems with Frictional Unilateral Constraints and Newton's Impact Laws: Summary .. 161
3.11 A Mechanical Filippov's System .. 162

4 Complementarity Systems .. 165
4.1 Definitions .. 165
4.2 Existence and Uniqueness of Solutions .. 167
 4.2.1 Passive LCS .. 168
 4.2.2 Examples of LCS ... 169
 4.2.3 Complementarity Systems and the Sweeping Process 170
 4.2.4 Nonlinear Complementarity Systems 172
4.3 Relative Degree and the Completeness of the Formulation 173
 4.3.1 The Single Input/Single Output (SISO) Case 174
 4.3.2 The Multiple Input/Multiple Output (MIMO) Case 175
 4.3.3 The Solutions and the Relative Degree 175

5 Higher Order Constrained Dynamical Systems 177
5.1 Motivations .. 177
5.2 A Canonical State Space Representation .. 178
5.3 The Space of Solutions ... 180
5.4 The Distribution \(\mathcal{D} \) and Its Properties 180
 5.4.1 Introduction ... 180
 5.4.2 The Inclusions for the Measures \(v_i \) ... 182
 5.4.3 Two Formalisms for the HOSP .. 183
 5.4.4 Some Qualitative Properties ... 186
5.5 Well-Posedness of the HOSP .. 187
5.6 Summary of the Main Ideas of Chapters 4 and 5 188
Part II Time Integration of Nonsmooth Dynamical Systems

7 Event-Driven Schemes for Inclusions with AC Solutions 203
 7.1 Filippov’s Inclusions ... 203
 7.1.1 Introduction ... 203
 7.1.2 Stewart’s Method .. 205
 7.1.3 Why Is Stewart’s Method Superior to Trivial Event-Driven
 Schemes? .. 213
 7.2 ODEs with Discontinuities with a Transversality Condition 215
 7.2.1 Position of the Problem ... 215
 7.2.2 Event-Driven Schemes .. 215

8 Event-Driven Schemes for Lagrangian Systems 219
 8.1 Introduction .. 219
 8.2 The Smooth Dynamics and the Impact Equations 221
 8.3 Reformulations of the Unilateral Constraints at Different
 Kinematics Levels .. 222
 8.3.1 At the Position Level .. 222
 8.3.2 At the Velocity Level .. 222
 8.3.3 At the Acceleration Level ... 223
 8.3.4 The Smooth Dynamics .. 224
 8.4 The Case of a Single Contact ... 225
 8.4.1 Comments .. 227
 8.5 The Multi-contact Case and the Index Sets 229
 8.5.1 Index Sets .. 229
 8.6 Comments and Extensions ... 230
 8.6.1 Event-Driven Algorithms and Switching Diagrams 230
 8.6.2 Coulomb’s Friction and Enhanced Set-Valued Force Laws 231
 8.6.3 Bilateral or Unilateral Dynamics? ... 232
 8.6.4 Event-Driven Schemes: L"{o}fstedt’s Algorithm 232
 8.6.5 Consistency and Order of Event-Driven Algorithms 236
 8.7 Linear Complementarity Systems .. 240
 8.8 Some Results .. 241
9 Time-Stepping Schemes for Systems with AC Solutions

9.1 ODEs with Discontinuities

9.1.1 Numerical Illustrations of Expected Troubles

9.1.2 Consistent Time-Stepping Methods

9.2 DIs with Absolutely Continuous Solutions

9.2.1 Explicit Euler Algorithm

9.2.2 Implicit θ-Method

9.2.3 Multistep and Runge–Kutta Algorithms

9.2.4 Computational Results and Comments

9.3 The Special Case of the Filippov’s Inclusions

9.3.1 Smoothing Methods

9.3.2 Switched Model and Explicit Schemes

9.3.3 Implicit Schemes and Complementarity Formulation

9.3.4 Comments

9.4 Moreau’s Catching-Up Algorithm for the First-Order

9.4.1 Mathematical Properties

9.4.2 Practical Implementation of the Catching-up Algorithm

9.4.3 Time-Independent Convex Set K

9.5 Linear Complementarity Systems with $r \leq 1$

9.6 Differential Variational Inequalities

9.6.1 The Initial Value Problem (IVP)

9.6.2 The Boundary Value Problem

9.7 Summary of the Main Ideas

10 Time-Stepping Schemes for Mechanical Systems

10.1 The Nonsmooth Contact Dynamics (NSCD) Method

10.1.1 The Linear Time-Invariant Nonsmooth Lagrangian Dynamics

10.1.2 The Nonlinear Nonsmooth Lagrangian Dynamics

10.1.3 Discretization of Moreau’s Inclusion

10.1.4 Sweeping Process with Friction

10.1.5 The One-Step Time-Discretized Nonsmooth Problem

10.1.6 Convergence Properties

10.1.7 Bilateral and Unilateral Constraints

10.2 Some Numerical Illustrations of the NSCD Method

10.2.1 Granular Material

10.2.2 Deep Drawing

10.2.3 Tensegrity Structures

10.2.4 Masonry Structures

10.2.5 Real-Time and Virtual Reality Simulations

10.2.6 More Applications

10.2.7 Moreau’s Time-Stepping Method and Painlevé Paradoxes

10.3 Variants and Other Time-Stepping Schemes

10.3.1 The Paoli–Schatzman Scheme

10.3.2 The Stewart–Trinkle–Anitescu–Potra Scheme
11 Time-Stepping Scheme for the HOSP .. 319
 11.1 Insufficiency of the Backward Euler Method 319
 11.2 Time-Discretization of the HOSP ... 321
 11.2.1 Principle of the Discretization 321
 11.2.2 Properties of the Discrete-Time Extended Sweeping Process 322
 11.2.3 Numerical Examples .. 324
 11.3 Synoptic Outline of the Algorithms 325

Part III Numerical Methods for the One-Step Nonsmooth Problems

12 Basics on Mathematical Programming Theory 331
 12.1 Introduction ... 331
 12.2 The Quadratic Program (QP) ... 331
 12.2.1 Definition and Basic Properties 331
 12.2.2 Equality-Constrained QP 335
 12.2.3 Inequality-Constrained QP 338
 12.2.4 Comments on Numerical Methods for QP 344
 12.3 Constrained Nonlinear Programming (NLP) 345
 12.3.1 Definition and Basic Properties 345
 12.3.2 Main Methods to Solve NLPs 347
 12.4 The Linear Complementarity Problem (LCP) 351
 12.4.1 Definition of the Standard Form 351
 12.4.2 Some Mathematical Properties 352
 12.4.3 Variants of the LCP ... 355
 12.4.4 Relation Between the Variants of the LCPs 357
 12.4.5 Links Between the LCP and the QP 359
 12.4.6 Splitting-Based Methods 363
 12.4.7 Pivoting-Based Methods 367
 12.4.8 Interior Point Methods 374
 12.4.9 How to chose a LCP solver? 379
 12.5 The Nonlinear Complementarity Problem (NCP) 379
 12.5.1 Definition and Basic Properties 379
 12.5.2 The Mixed Complementarity Problem (MCP) 383
 12.5.3 Newton–Josephy’s and Linearization Methods 384
 12.5.4 Generalized or Semismooth Newton’s Methods 385
 12.5.5 Interior Point Methods 388
 12.5.6 Effective Implementations and Comparison of the Numerical Methods for NCPs 388
 12.6 Variational and Quasi-Variational Inequalities 389
 12.6.1 Definition and Basic Properties 389
 12.6.2 Links with the Complementarity Problems 390
 12.6.3 Links with the Constrained Minimization Problem 391
 12.6.4 Merit and Gap Functions for VI 392
12.6.5 Nonsmooth and Generalized equations .. 396
12.6.6 Main Types of Algorithms for the VI and QVI 398
12.6.7 Projection-Type and Splitting Methods 398
12.6.8 Minimization of Merit Functions ... 400
12.6.9 Generalized Newton Methods .. 401
12.6.10 Interest from a Computational Point of View 401
12.7 Summary of the Main Ideas ... 401

13 Numerical Methods for the Frictional Contact Problem 403
13.1 Introduction ... 403
13.2 Summary of the Time-Discretized Equations 403
13.2.1 The Index Set of Forecast Active Constraints 403
13.2.2 Summary of the OSNSPs ... 405
13.3 Formulations and Resolutions in LCP Forms 407
13.3.1 The Frictionless Case with Newton's Impact Law 407
13.3.2 The Frictionless Case with Newton's Impact and Linear Perfect Bilateral Constraints .. 408
13.3.3 Two-Dimensional Frictional Case as an LCP 409
13.3.4 Outer Faceting of the Coulomb's Cone 410
13.3.5 Inner Faceting of the Coulomb's Cone 414
13.3.6 Comments ... 417
13.3.7 Weakness of the Faceting Process ... 418
13.4 Formulation and Resolution in a Standard NCP Form 419
13.4.1 The Frictionless Case ... 419
13.4.2 A Direct MCP for the 3D Frictional Contact 419
13.4.3 A Clever Formulation of the 3D Frictional Contact as an NCP 420
13.5 Formulation and Resolution in QP and NLP Forms 422
13.5.1 The Frictionless Case ... 422
13.5.2 Minimization Principles and Coulomb's Friction 423
13.6 Formulations and Resolution as Nonsmooth Equations 424
13.6.1 Alart and Curnier's Formulation and Generalized Newton's Method ... 424
13.6.2 Variants and Line-Search Procedure 429
13.6.3 Other Direct Equation-Based Reformulations 430
13.7 Formulation and Resolution as VI/CP ... 432
13.7.1 VI/CP Reformulation .. 432
13.7.2 Projection-type Methods .. 433
13.7.3 Fixed-Point Iterations on the Friction Threshold and Ad Hoc Projection Methods .. 434
13.7.4 A Clever Block Splitting: the Nonsmooth Gauss–Seidel (NSGS) Approach ... 437
13.7.5 Newton's Method for VI .. 440
Part IV The SICONOS Software: Implementation and Examples

14 The SICONOS Platform .. 443
 14.1 Introduction .. 443
 14.2 An Insight into SICONOS 443
 14.2.1 Step 1. Building a Nonsmooth Dynamical System 444
 14.2.2 Step 2. Simulation Strategy Definition 447
 14.3 SICONOS Software 448
 14.3.1 General Principles of Modeling and Simulation 448
 14.3.2 NSDS-Related Components 451
 14.3.3 Simulation-Related Components 456
 14.3.4 SICONOS Software Design 457
 14.4 Examples .. 460
 14.4.1 The Bouncing Ball(s) 460
 14.4.2 The Woodpecker Toy 463
 14.4.3 MOS Transistors and Inverters 464
 14.4.4 Control of Lagrangian systems 466

A Convex, Nonsmooth, and Set-Valued Analysis 475
 A.1 Set-Valued Analysis 475
 A.2 Subdifferentiation 475
 A.3 Some Useful Equivalences 476

B Some Results of Complementarity Theory 479

C Some Facts in Real Analysis 481
 C.1 Functions of Bounded Variations in Time 481
 C.2 Multifunctions of Bounded Variation in Time 482
 C.3 Distributions Generated by RCLSBV Functions 483
 C.4 Differential Measures 486
 C.5 Boehr's Distributions 487
 C.6 Some Useful Results 487

References .. 489

Index .. 519