The Physics of Phase Transitions

Concepts and Applications

Translated from the French by S.L. Schnur With 180 Figures Second Revised Edition

Contents

1	The	ermodynamics and Statistical Mechanics of Phase	
		nsitions	1
	1.1	What is a Phase Transition?	1
	1.2	Thermodynamic Description of Phase Transitions	4
		1.2.1 Stability and Transition – Gibbs–Duhem Criterion	4
		1.2.2 Phase Diagrams	8
		1.2.3 Thermodynamic Classification of Phase Transitions	13
	1.3	General Principles of Methods of Investigating	
		Phase Transitions	17
		1.3.1 Calculation of Thermodynamic Potentials	
		and Quantities	18
		1.3.2 Equation of State	22
		1.3.3 Dynamic Aspects – Fluctuations	22
	1.4	The Broad Categories of Phase Transitions	25
		1.4.1 Transitions with a Change in Structure	26
		1.4.2 Transitions with No Change in Structure	28
		1.4.3 Non-Equilibrium Transitions	29
	1.5	The Major Experimental Methods	
		for Investigation of Phase Transitions	30
	1.6	The Broad Categories of Applications of Phase Transitions	31
	1.7	Historical Aspect: from the Ceramics	
		of Antiquity to Nanotechnologies	32
	Pro	blems	35
2	Dy	namics of Phase Transitions	37
	2.1	A Large Variety of Mechanisms	37
	2.2	Nucleation	38
		2.2.1 The Diffusion Phenomenon – Fick's Law	38
		2.2.2 Diffusion Coefficient and Activation Energy	39
		2.2.3 Nucleation of a New Phase	40
		2.2.4 Nucleation Rate	46
		2.2.5 Global Phase Transformation – Avrami Model	51
	2.3	Spinodal Decomposition	55
		2.3.1 Thermodynamics of Spinodal Decomposition	56

		2.3.2 Experimental Demonstration – Limitation of the Model	61
	2.4		64
			64
		č	66
	2.5		67
			67
			72
	2.6	Dynamics of Phase Transitions	
		•	75
3	Pha	se Transitions in Liquids and Solids: Solidification	
			79
	3.1		79
	3.2	-	80
			80
			82
		1 11	84
			86
	3.3		90
		0	90
		3.3.2 The Role of Defects	92
			95
	3.4	0	96
		3.4.1 Theoretical Approach to Crystallization	
		•	97
		3.4.2 Case of Colloids 1	04
		3.4.3 Crystallization and Melting of Polymers 1	
	3.5	Crystallization, Melting, and Interface	
		3.5.1 Surface Melting 1	
		3.5.2 Size Effect on Small Particles 1	
		3.5.3 The Special Case of Ice 1	
	3.6	Very Numerous Applications	
		3.6.1 Melting – Solidification in Metallurgy 1	18
		3.6.2 Molding of Polymers 1	20
		3.6.3 Production of Sintered Ceramics 1	21
4	Pha	ase Transitions in Fluids1	25
	4.1	The Approach with Equations of State 1	25
	4.2	The Liquid–Gas Transition in Simple Liquids	
		4.2.1 Van der Waals Equation of State	
		4.2.2 The Law of Corresponding States 1	
		4.2.3 Behavior Near the Critical Point	
	4.3	Thermodynamic Conditions of Equilibrium	
		4.3.1 Liquid-Gas Equilibrium	
		4.3.2 Maxwell's Rule	33

		4.3.3	Clausius–Clapeyron and Ehrenfest Equations	. 134
	4.4	Main	Classes of Equations of State for Fluids	
		4.4.1	General Principles	
		4.4.2	One-Component Fluids	
		4.4.3	Variants of the van der Waals Equation	
	4.5	Meta	stable States: Undercooling and Overheating	
	-	4.5.1	Returning to Metastability	
		4.5.2	Drops and Bubbles Formation	
	4.6		lation of Phase Transitions	
		4.6.1	Principles	
		4.6.2	Molecular Dynamics	
		4.6.3	Monte Carlo Method	
	4.7	Mixtu	re of Two Components	
		4.7.1	Conditions of Phase Equilibrium in a Binary Mixture	
		4.7.2	Systems in the Vicinity of a Critical Point	
		4.7.3	Equation of State of Mixtures	
		4.7.4	Mixtures of Polymers or Linear Molecules	
		4.7.5	Binary Mixtures far from the Critical Point	
		4.7.6	Supercritical Demixing	
		4.7.7	Tricritical Points	
5	The		s Transition	
	5.1		Formation	
	5.2	The (Glass Transition	. 168
		5.2.1	Thermodynamic Characteristics	
		5.2.2	Behavior of the Viscosity	
		5.2.3	Relaxation and Other Time Behaviors	. 173
	5.3	The S	Structure of Glasses	. 173
		5.3.1	Mode Coupling Theory	. 176
		5.3.2	Industrial Applications	. 183
		5.3.3	Models for Biological Systems	. 185
	~ .			100
6			and Transitions in Biopolymers	
	6.1		Gel State and Gelation	
		6.1.1	Characterization of a Gel	
		6.1.2	The Different Types of Gels	
	6.2	-	erties of Gels	
		6.2.1	Thermal Properties	
		6.2.2	Mechanical Properties	
	6.3		odel For Gelation: Percolation	
	<u> </u>	6.3.1	The Percolation Model	
	6.4	-	olymers Gels	
		6.4.1	An Important Gel: Gelatin	
		6.4.2	Polysaccharide Gels	
		6.4.3	Modeling of the Coil \Leftrightarrow Helix Transition	. 204

		6.4.4	Statistical Model 208	õ
	6.5	Main	Applications of Gels and Gelation 209	9
7	Tra	nsitior	as and Collective Phenomena in Solids.	
			$\mathbf{perties} \dots \dots$	5
	7.1		itions with Common Characteristics	
	7.2		Order–Disorder Transition in Alloys	
	7.3		${ m etism}$	
		7.3.1	Characterization of Magnetic States	
		7.3.2	The Molecular Field Model	
		7.3.3	Bethe Method	
		7.3.4	Experimental Results 22	9
	7.4	Ferroe	electricity	
		7.4.1	Characteristics	
		7.4.2	The Broad Categories of Ferroelectrics	1
		7.4.3	Theoretical Models – the Landau Model	3
	7.5	Super	conductivity	6
		7.5.1	A Complex Phenomenon 23	6
		7.5.2	Theoretical Models	8
	7.6	Unive	rsality of Critical Phenomena	1
		7.6.1	Critical Exponents and Scaling Laws	1
		7.6.2	Renormalization Group Theory	3
	7.7	Techn	ological Applications	5
8	Col	lective	Phenomena in Liquids: Liquid Crystals	
			rfluidity	1
	8.1		1 Crystals	
		8.1.1	Partially Ordered Liquid Phases	1
		8.1.2	Definition of Order in the Liquid Crystal State 25	
		8.1.3	Classification of Mesomorphic Phases	3
		8.1.4	The Nematic Phase and its Properties	0
		8.1.5	The Many Applications of Liquid Crystals 28	
		8.1.6	Mesomorphic Phases in Biology 29	
	8.2	Super	fluidity of Helium	1
		8.2.1	Helium 4	2
		8.2.2	Superfluidity in Helium 3 30	1
9	Mic	crostru	actures, Nanostructures and Phase Transitions 30	5
	9.1		mportance of the Microscopic Approach	
	9.2	Micro	structures in Solids 30	
		9.2.1	Solidification and Formation of Microstructures 30	
		9.2.2	A Typical Example: The Martensitic Transformation . 30	
		9.2.3	Singular Phases: The Quasicrystals 31	
		9.2.4	The Special Case of Sintering in Ceramics	2

		9.2.5	Microstructures in Ferromagnetic, Ferroelectric,	
			and Superconducting Phases 316	ì
	9.3	Micros	structures in Fluid Phases 324	ł
		9.3.1	Microemulsions 325	
		9.3.2	Colloids 326	3
	9.4		structure, Nanostructures,	
		and T	heir Implications in Materials Technology 329)
10	Tra	nsition	s in Thin Films	5
	10.1		ayers at the Air–Water Interface	
			The Role of Surfactants 335	
		10.1.2	Examples of Molecules Forming Monolayers 336	;
		10.1.3	Preparation and Thermodynamics Study	
			of Monolayers 337	
			Phase Diagram of a Monolayer 338	
			ayer on the Surface of a Solid 343	
	10.3	Meltin	g and Vitification of Thin Films 345	5
11			nsitions under Extreme Conditions and in	
			ural and Technical Systems	
	11.1		Transitions under Extreme Conditions	
			Experimental Methods	7
		11.1.2	Equations of State and Phase Transitions	_
			under Extreme Conditions	
			Geomaterials	
			The Plasma State)
		11.1.5	Bose–Einstein Condensates	
	11.0	 D	at Extremely Low Temperature)
	11.2		ole of Phase Transitions	2
			Ocean-Atmosphere System	5
		11.2.1	Stability of an Atmosphere Saturated with Water Vapor	h
		11 9 9	Thermodynamic Behavior of Humid Air	
			Formation of Ice in the Atmosphere – Melting)
		11.2.0	of Ice and Climate	3
	11.3	Phase	Transitions in Technical Systems	
			Vaporization in Heat Engines	
			The Cavitation Phenomenon	
			Boiling Regimes	
			Phase Transitions and Energy Storage	
An	swer	s to P	roblems	7
٨	Con	litions	for Phase Equilibrium	1
<i>n</i> .	Cont	11010115		r,

D. \mathbf{F} ercus - review Equation $\dots \dots \dots$	B. Percus–Yevick Equation	
--	----------------------------------	--

C. Renormalization Group Theory 397

Bibliography	399
--------------	-----

ndex	5