Melvyn B. Nathanson

Additive Number Theory

¢

The Classical Bases

a and a second and a a second a second and a

Contents

Preface	vii
Notation and conventions	xiii

I Waring's problem

1	Sums of polygons				
	1.1	Polygonal numbers	4		
	1.2	Lagrange's theorem	5		
	1.3	Quadratic forms	7		
	1.4	Ternary quadratic forms 1	2		
	1.5	Sums of three squares	7		
	1.6	Thin sets of squares 2	4		
	1.7	The polygonal number theorem	7		
	1.8	Notes	3		
	1.9	Exercises	4		
2	Waring's problem for cubes 37				
	2.1	Sums of cubes	7		
	2.2	The Wieferich–Kempner theorem	8		
	2.3	Linnik's theorem	4		
	2.4	Sums of two cubes	9		
	2.5	Notes	1		
	2.6	Exercises	2		
3	The	Hilbert–Waring theorem 7	5		
	3.1	Polynomial identities and a conjecture of Hurwitz	5		
	3.2	Hermite polynomials and Hilbert's identity	7		
	3.3	A proof by induction	6		
	3.4	Notes	4		

x Contents

	3.5	Exercises	94
4	Wey	l's inequality	97
	4.1	Tools	97
	4.2	Difference operators	99
	4.3	Easier Waring's problem	102
	4.4	Fractional parts	103
	4.5	Weyl's inequality and Hua's lemma	111
	4.6	Notes	118
	4.7	Exercises	118
5	The	Hardy–Littlewood asymptotic formula	121
	5.1	The circle method	121
	5.2	Waring's problem for $k = 1$	124
	5.3	The Hardy–Littlewood decomposition	125
	5.4	The minor area	127
			141
	5.5	The major arcs	127
	5.5 5.6	The major arcs	127 129 133
	5.5 5.6 5.7	The major arcs	129 133 137
	5.5 5.6 5.7 5.8	The major arcs	127 129 133 137 146
	5.5 5.6 5.7 5.8 5.9	The film of arcs The singular integral The singular integral The singular series Conclusion The singular series	127 129 133 137 146 147
	5.5 5.6 5.7 5.8 5.9 5.10	The finite factor The major arcs The singular integral The singular series The singular series The singular series Notes The series Exercises The series	127 129 133 137 146 147 147

II The Goldbach conjecture

ī

1

6	Elen	nentary estimates for primes	151
	6.1	Euclid's theorem	151
	6.2	Chebyshev's theorem	153
	6.3	Mertens's theorems	158
	6.4	Brun's method and twin primes	167
	6.5	Notes	173
	6.6	Exercises	174
7	The	Shnirel'man–Goldbach theorem	177
	7.1	The Goldbach conjecture	177
	7.2	The Selberg sieve	178
	7.3	Applications of the sieve	186
	7.4	Shnirel'man density	191
	7.5	The Shnirel'man–Goldbach theorem	195
	7.6	Romanov's theorem	199
	7.7	Covering congruences	204
	7.8	Notes	208
	7.9	Exercises	208

ç

8	Sum	s of three primes	211
	8.1	Vinogradov's theorem	211
	8.2	The singular series	212
	8.3	Decomposition into major and minor arcs	213
	8.4	The integral over the major arcs	215
	8.5	An exponential sum over primes	220
	8.6	Proof of the asymptotic formula	227
	8.7	Notes	230
	8.8	Exercise	230
9	The	linear sieve	231
	9.1	A general sieve	231
	9.2	Construction of a combinatorial sieve	238
	9.3	Approximations	244
	9.4	The Jurkat–Richert theorem	251
	9.5	Differential-difference equations	259
	9.6	Notes	267
	9.7	Exercises	267
10	Cher	n's theorem	271
	10.1	Primes and almost primes	271
	10.2	Weights	272
	10.3	Prolegomena to sieving	275
	10.4	A lower bound for $S(A, \mathcal{P}, z)$	279
	10.5	An upper bound for $S(A_q, \mathcal{P}, z)$	281
	10.6	An upper bound for $S(B, \mathcal{P}, y)$	286
	10.7	A bilinear form inequality	292
	10.8	Conclusion	297
	10.9	Notes	298

III Appendix

Arithmetic functions			
A.1	The ring of arithmetic functions	301	
A.2	Sums and integrals	303	
A.3	Multiplicative functions	308	
A.4	The divisor function	310	
A.5	The Euler φ -function	314	
A.6	The Möbius function	317	
A.7	Ramanujan sums	320	
A.8	Infinite products	323	
A.9	Notes	327	
A.10	Exercises	327	

Bibliography

.

ç

Index

331

•