Michael Sonis • Geoffrey J.D. Hewings Editors

Tool Kits in Regional Science

Theory, Models, and Estimation

Contents

Co	ntribu	itors		. xiii	
1	Introduction Michael Sonis			1	
2	Complex Socio-Economic Systems in Regional Science				
	2.1		uction		
	2.2	Catasti 2.2.1	Cone-Wedge Presentation of the Domain of Structural		
	~ 2	Cturret	Stability of Optimal Solutions		
	2.3	2.3.1	ure of Optimal (Minimum Cost) Transportation Flows Domains of Structural Stability and Boundaries of Structural Change in Optimal Transportation Networks		
		2.3.2	Behavioral Competition Between Suppliers and Demanders within the Minimum Cost Transportation Problem		
	2.4	Superr	position Principle: The Inverted Problem	12	
	2.1		lti-Objective Programming	12	
		2.4.1	Connection Between the Weber Principle of Industrial		
			Location and the Möbius Barycentric Calculus	14	
		2.4.2	The Caratheodory Theorem and the Inverted Problem		
			of Multi-Objective Programming	15	
		2.4.3	Decomposition Formalism for Multi-Objective Analysis		
			Based on Minkovsky-Caratheodory Theorem	17	
	2.5	Polyhe	edral Catastrophic Dynamics of the Push-Pull States		
		of Mig	gration Streams	21	
		2.5.1	Description and Geometrical Interpretation		
			of the Decomposition Procedure		
		2.5.2	Normalized Space of Admissible Migration States		
		2.5.3	Example of the Decomposition Analysis		
		2.5.4	Interconnections Between Pull and Push Analyses		
		2.5.5	Polyhedral Catastrophic Dynamics	28	
	2.6		struction of Central Places Geometry on the Basis		
			ycentric Calculus	30	
		2.6.1	Main Assumptions of the Classical Theory of the Central		
		2 (2	Places		
	27	2.6.2	Barycentric Coordinates in the Möbius Plane		
	2.7		uperposition Model of Central Place Hierarchy		
		2.7.1	Hierarchical Structures of the Central Place System	40	
		2.7.2	Polyhedron of Admissible Central Place Hierarchies	40	
			for an Actual Central Place System	42	

3

	2.7.3	Decomposition of an Actual Central Place Hierarchy	. 43
	2.7.4	Best Fitting Approximation Procedure and the Algorithm	
		of Decomposition	. 44
	2.7.5	Hierarchical Analysis of the Christaller Original Central	
		Place System in Munich, Southern Germany	.45
	2.7.6	Structural Stability, Structural Changes and Catastrophes	
		in Central Place Hierarchical Dynamics	
2.8	Transp	oortation Flows in Central Place Systems	. 48
	2.8.1	Spatial Structure of the Minimum Cost Flows in a Bounded	
		Beckmann-McPherson Central Place System	. 48
	2.8.2	Aggregated Schemes and Transportation Tables for	
		Derivation of Rotationally Invariant Flows	. 49
	2.8.3	Structurally Stable "Top-Down" Transportation Flows	
		in Bounded Three-Tier Beckmann-McPherson Central	
		Place Hierarchies	. 50
	2.8.4	Optimal Extensions of the Transportation Network	
		in Growing Urban Systems	. 54
2.9		ack Loop Decomposition Analysis of Spatial Economic	
	•	ns: Hierarchy of Spatial/Functional Feedback Loop	
	Produc	ction Cycles	. 57
	2.9.1	Quasi-Permutation Matrices and Closed Feedback Loops	
		of the Intra-Regional Production Cycles	. 58
	2.9.2	Superposition of Intra-Regional Production Feedback Loop	
		Cycles: Decomposition Algorithm	. 60
	2.9.3	Vertical Specialization of Production and the Economic	
		Meaning of the Multi-Regional Aggregated Spatial	
		Feedback Loop Production Cycles	.61
	2.9.4	The Matrioshka Imbedding Principle for the Nested	
		Disaggregated Hierarchy of Spatial Feedback Loop	
		Production Cycles	. 62
	2.9.5	Spatial Production Cycles in the European Common	
		Market, 1965–1980	. 63
Neu	/ Develo	opments in Input-Output Analysis	69
		fluence of Changes, the Temporal Leontief Inverse	
		consideration of Classical Key Sector Analysis	
		nis and Geoffrey J. D. Hewings	
		, .	
3.1		uction: Coefficient Change in Input–Output Models	
	3.1.1	Three Approaches to Input Coefficient Change	.71
3.2		Results of the Theory of Field of Influence of Changes	- /
	in Dire	ect Inputs	. 74

	3.2.1	Temporal Multipliers and Temporal Increments	74
-	-3.2.2	Multiplicative and Additive Forms of the Temporal	
		Leontief Inverse	75
	3.2.3	The Fine Structure of the Temporal Increments	
3.3	Direct	(First Order) Fields of Influence of Coefficient Change:	
		Form of the Sherman-Morrison approach	80
	3.3.1	Definition of Direct (First Order) Field of Influence	
		of Changes	80
	3.3.2	Cross Structure of the First Order Fields of Influence	
	3.3.3	Change in One Row (Column)	
3.4	Recons	sideration of Classical Key Sector Analysis	
	3.4.1	Intensity of Direct Field of Influence and the Global	
		Intensity Matrix as Multiplier Product Matrix (MPM)	85
	3.4.2	Backward and Forward Linkages of Economic Sectors	
		and Key Sector Analysis	86
	3.4.3	Multiplier Product Matrix (MPM) and Structural Economic	
		Landscapes	88
	3.4.4	Minimum Information Property of MPM	90
3.5	Synerg	etic Second Order Fields of Influence	
	3.5.1	Definition of Second Order Field of Influence.	93
	3.5.2	Structure of Fields of Influence of the Second Order	95
	3.5.3	Intensity of the Second Order Synergetic Fields	
		of Influence	95
	3.5.4	Distribution Span of Fields of Influence of the Second	
		Order	96
	3.5.5	Numerical Distribution Span of Intensities of Fields	
		of Influence of the Second order	98
	3.5.6	Simonovits' Error Rectangles and the Decomposition	
		of Leontief Inverse	
3.6	Minim	um Information Decomposition of Leontief Inverse	101
	3.6.1	Structure of Synergetic Interactions Between Economic	
		Sectors	
3.7	-	ector Analysis of the Chinese Economy, 1987, 1990	
	3.7.1	The Chinese National Economy, 1987	
	3.7.2	Changes in the Chinese Economy, 1987–1990	111
	3.7.3	Comparative Analysis: China and the Metropolitan	
		Economies	112
Inte	rregion	al Computable General Equilibrium Models	119
	ardo Had		
A 1	Interado	notion	110
4.1 4.2		action ized Theoretical Interregional General Equilibrium Model	
4.2	A SIYI	izeu meoreneai merregional General Equinorium Model	120

4

		4.2.1 Regions	121
		4.2.2 Commodities	121
		4.2.3 Consumers	121
		4.2.4 Firms	121
		4.2.5 Endowments	122
	4.3	Social Accounting Matrices as the Basis for Modeling	125
		4.3.1 Scaffolding	127
	4.4	The State-of-the-Art: Common Features, Common Issues	
		4.4.1 Regional Setting and Data Constraints	128
		4.4.2 Bottom–Up and Top–Down Approaches	129
		4.4.3 Interregional Linkages	
		4.4.4 Production and Consumption Systems	
		4.4.5 Transportation Services	
		4.4.6 Calibration	
		4.4.7 Sensitivity Analysis	139
		4.4.8 Closure	
		4.4.9 Intertemporal Analysis	142
		4.4.10 Solution Method	142
		4.4.11 Operational Models	143
	4.5	The Road Ahead: Challenges and New Directions	146
5		mality versus Stability: Pattern Formation in Spatial	
		nomics	155
	Töni	ı Puu	
	5.1	Optimality and Linearity in Economics	155
	5.2	Flows and Areas	
	5.3	An Illustrative Case from Solid Geometry	157
	5.4	Hexagonal Patterns: Optimality of Shape	
	5.5	On Boundary Conditions	
	5.6	Transversality	
	5.7	Further Research Agenda	
,		-	
6		an and Hinterland Evolution Under Growing Population	162
		sure	103
	WOI	fgang Weidlich	
	6.1	General Design Principles	163
	6.2	The Integrated Model for Urban and Population Evolution	164
		6.2.1 The Key-Variables	164
		6.2.2 Motivation-Driven Probabilistic Transition Rates	165
		6.2.3 Evolution Equations	166
	6.3	A Simple Implementation of the Population-Sector: Global	
		Treatment of City- and Hinterland-Population	168
		6.3.1 The Global Population and Capacity Variables	168
		6.3.2 Global Personal Utilities and Transition Rates	169

		6.3.3 6.3.4	Evolution Equations for the Population Configuration The Case of Equal Net Birth Rates in City and Hinterland	
7		-	ial Dynamics and Discrete Non-Linear Probabilistic	
			nis and Dimitrios S. Dendrinos	177
	7.1		uction: Universality of Discrete Socio-Spatial Dynamics	
	7.2		ition and Elementary Properties of Probabilistic Chains	178
	7.3		of Discrete Probabilistic Chains Describing Relative	101
		50010- 7.3.1	-Spatial Dynamics Fractional-Linear Probabilistic Chains	
		7.3.1		
		7.3.2	Linear Probabilistic (Markov) Chains Logistic Growth Probabilistic Chain	
		7.3.4	Statistical Procedure for Estimation of Rates of Change	102
		1.2.4	and Initial State of the Logistic Growth Probabilistic Chain	ł
			(Sonis, 1983, Sonis, 1987a)	
		7.3.5	Interpolation-Extrapolation Dynamics of the Logistic	
			Growth Probabilistic Chain	185
		7.3.6	Applications to Analysis of Israeli Regional Employment	
			Co-Influence	186
		7.3.7	Log-Linear Probabilistic Chains	189
		7.3.8	Application of Log-Linear Probabilistic Chain Model	
			to the Analysis of Regional Competition and	
			Complementarity	190
		7.3.9	Interdependence Interpreted from the Viewpoint.	
			of Discrete Relative Dynamics	
	7.4		uding Comments and Future Directions	
8			of Neural Spatial Interaction Modeling	199
	Man	ifred M.	. Fischer	
	8.1		luction	
	8.2		context	
	8.3		ork Learning and Model Performance	
	8.4		and Global Search Procedures	
	8.5		trap Estimation	
	8.6		l Complexity	
	8.7		sing the Generalization Performance	
	8.8		uding Remarks	
9	-		not so Dirty ML Estimation of Spatial Autoregressive	_
			× • • • • • • • • • • • • • • • • • • •	215
	Dan	iel A. G	Jriffith	
	9.1		ground	215
	9.2		lormalizing Constant Approximation: History, Description	
		and G	eneralization	217

•

		9.2.1 9.2.2	History Derivation of Griffith and Sone's Approximation	.218
			Specification	220
		9.2.3	Extensions of Griffith and Sone's Approximation	
		9.2.4	Alternatives to the Griffith-Sone Jacobian Approximation	
	9.3		nentation of the Jacobian Approximation	
	1.5	9.3.1	The Jacobian Approximation when all of the Eigenvalues	. 220
		2.2.1		.229
		9.3.2	The Jacobian Approximation when the n-1 Nonprincipal	. 22)
		9.5.2	Eigenvalues are Unknown but can be Approximated	222
		9.3.3	The Jacobian Approximation when the n-1 Nonprincipal	. 252
		9.3.3	Eigenvalues are Unknown and Lack a Known	
			•	222
	0.4	I	Approximation	
	9.4		ations for Standard Error Estimates	
	9.5	Discus	sion and Future Directions	. 239
10	Inno	vation	Diffusion Theory: 100 Years of Development	.243
		ael Son	· · ·	
	10.1	Introdu	iction	242
			Actors in the Analysis of the Innovation Diffusion Process	
	10.5		Ecological Mechanisms of Innovation Spread	. 248
		10.3.1	Empirical Regularities of Innovation Spread: Competition	~
			Between Adoption and Non-Adoption	
			Many Competitive Innovations	.250
		10.3.3	Qualitative Analysis of the Innovation Diffusion Process:	
			Some Examples	.252
	10.4		rst Principle of Individual Choice Within	
			llective	
			Choice Behavior of Homo Oeconomicus	
			Choice Behavior of Homo Politicus	
			Choice Behavior of Homo Socialis	
			Adopter as a "Collective Being" in Innovation Choice	
	10.5	Innova	tors and Innovating Elites	. 258
		10.5.1	Duality Between Supply Push and Demand Pull:	
			Meso-Level Competition Between Social Elites vs.	
			Micro-Level Social Contacts	. 259
		10.5.2	Captive Manipulation Power of Elites Influence:	
			Ten Commandments of Aggressive Intolerance	. 261
	10.6	Active	Environment and Socio-Ecological Niches	
			Adoption and Non-Adoption Niches in Innovation	
			Diffusion Process	.263
		10.6.2	Case of Many Competitive Innovations and their Niches	
	10.7		ision and Future Directions of Development	
			I	-

11 L	Urban Economics at a Cross-Road			
	11.1Urban Economics in Regional Science2711.2Recent Theoretical Directions2711.3Recent Methodological Directions2811.4Urban Economics and Regional Science Transition2811.5Future Challenges2811.6Conclusions28	6 0 3 6		
12	Conclusion Theories and Models Inspired by Empirical Regularities of Socio-Economic Spatial Analysis Michael Sonis			
	12.1 Introduction	3		
	and Socio-Ecological Sciences	6		
	12.2.1 Principle of Collectivity	7		
	12.2.2 Principle of Complication	7		
	12.2.3 The principle of Superposition	8		
	12.2.4 The Duality Principle	9		
Ind	x	3		