Anastasios A. Tsiatis

Semiparametric Theory and Missing Data

Contents

Pro	Preface vii		
1	Int	roduction to Semiparametric Models	1
		What Is an Infinite-Dimensional Space?	
	1.2	Examples of Semiparametric Models	
		Example 1: Restricted Moment Models	3
		Example 2: Proportional Hazards Model	
		Example 3: Nonparametric Model	8
	1.3	Semiparametric Estimators	8
2	Hil	bert Space for Random Vectors	11
	2.1	The Space of Mean-Zero g-dimensional	
		Random Functions.	11
		The Dimension of the Space of Mean-Zero	
		Random Functions	
	2.2	Hilbert Space	13
	2.3	Linear Subspace of a Hilbert Space and	
		the Projection Theorem	
		Projection Theorem for Hilbert Spaces.	14
	2.4	~ ~	
		the Projection Theorem	
		Example 1: One-Dimensional Random Functions	15
		Example 2: (/-dimensional Random Functions.	16
	2.5	Exercises for Chapter 2	19
3	Th	e Geometry of Influence Functions	21
	3.1	Super-Efficiency	24
		Example Due to Hodges :	24
	3.2	'?n-Estimators (Quick Review).	29
		Estimating the Asymptotic Variance of an m-Estimator	
		Proof of Theorem 3.2	34

Contents

3.3	Geometry of Influence Functions for Parametric Models.	
	Constructing Estimators.	
3.4	Efficient Influence Function	
	Asymptotic Variance when Dimension Is Greater than One	
	Geometry of Influence Functions	
	Deriving the Efficient Influence Function	
3.5	Review of Notation for Parametric Models	49
3.6	Exercises for Chapter 3	50
	niparametric Models	
4.1	GEE Estimators for the Restricted Moment Model	
	Asymptotic Properties for GEE Estimators	
	Example: Log-linear Model	57
4.2	Parametric Submodels.	59
4.3	Influence'Functions for Semiparametric	
	RAL Estimators	
4.4	Semiparametric Nuisance Tangent Space	
	Tangent Space for Nonparametric Models	
	Partitioning the Hilbert Space.	
4.5	Semiparametric Restricted Moment Model	.73
	The Space A_{2s}	
	The Space A_u	79
	Influence Functions and the Efficient Influence Function for	
	the Restricted Moment Model	. 83
	The Efficient Influence Function.	. 85
	A Different Representation for the Restricted	
	Moment Model	. 87
	Existence of a Parametric Submodel for the Arbitrary	
	Restricted Moment Model	91
4.6	Adaptive Semiparametric Estimators for .the Restricted	
	Moment Model	
	Extensions of the Restricted Moment Model ,	
4.7	Exercises for Chapter 4	98
Oth	ner Examples of Semiparametric Models	.101
5.1	Location-Shift Regression Model	.101
	The Nuisance Tangent Space and Its Orthogonal Complement	
	for the Location-Shift Regression Model.	.103
	Semiparametric Estimators for (3	.106
	Efficient Score for the Location-Shift Regression Model	.107
	Locally Efficient Adaptive Estimators	.108
	Remarks	.113
5.2	Proportional Hazards Regression Model with	
	Censored Data	
	The Nuisance Tangent Space.	.117

		Contents	xiii
		The Space $A_{2.5}$ Associated with $Xc \setminus x(y \setminus x)$. The Space Aj_s Associated with $\setminus (v)$. Finding the Orthogonal Complement of the Nuisance	
		Tangent Space	123
	5.3 5'.4	Estimating the Mean in a Nonparametric Model Estimating Treatment Difference in a Randomized	
	<i>3.</i> न	Pretest-Posttest Study or with Covariate Adjustment The Tangent Space and Its Orthogonal Complement	
	5.5 5.6	Remarks about Auxiliary Variables. Exercises for Chapter 5.	
6	Mo	dels and Methods for Missing Data	137
	6.1	Introduction	137
	6.2	Likelihood Methods	
	6.3	Imputation	
	6.4	Remarks. Inverse Probability Weighted Complete-Case Estimator.	
	6.5	Double Robust Estimator.	
	6.6	Exercises for Chapter 6	
7	Mis	ssing and Coarsening at Random for Semiparametric	
•		dels	151
	7.1	Missing and Coarsened Data	
		Missing Data as a Special Case of Coarsening	
	7.0	Coarsened-Data Mechanisms.	
	7.2	The Density and Likelihood of Coarsened Data	
		Discrete Data	150
		Likelihood when Data Are Coarsened at Random.	
		Brief Remark on Likelihood Methods	
		Examples of Coarsened-Data Likelihoods.	
	7.3	The Geometry of Semiparametric	
		Coarsened-Data Models.	163
		The Nuisance Tangent Space Associated with the Full-Data Nuisance Parameter and Its Orthogonal Complement	166
	7.4	Example: Restricted Moment Model with Missing Data by	174
		Design The Logistic Regression Model	
	7.5	The Logistic Regression Model. Recap and Review of Notation.	
		' Exercises for Chapter 7.	
		T	

8	The	Nuisance Tangent Space and Its Orthogonal	
	Con	nplement	
	8.1	\mathcal{C}	
		Two Levels of Missingness	185
		Monotone and Nonmonotone Coarsening for more than	
		Two Levels"	
	8.2	\mathcal{C}	
		MLE for <i>ip</i> with Two Levels of Missingness	
		MLE for <i>if</i>) with Monotone Coarsening	. 189
•	8.3		
		Are Modeled	190
	8.4	The Space Orthogonal to the	
		Nuisance Tangent Space.	
	8.5	Observed-Data Influence Functions	
	8.6	Recap and Review of Notation.	
	8.7	Exercises for Chapter 8	196
9	A	rmented Invence Duchability "Weighted Complete Cogo	
9		gmented Inverse Probability "Weighted Complete-Case	100
	9.1	mators Deriving Semiparametric Estimators for /?	100
	9.1	Interesting Feet	199
		Interesting Fact, Estimating the Asymptotic Variance,	
	9.2	Additional Results Regarding Monotone Coarsening	
	9.2	The Augmentation Space A2 with Monotone Coarsening.	
	9.3	Censoring and Its Relationship to	207
	9.3	Monotone Coarsening	213
		Probability of a Complete Case with Censored Data.	
		The Augmentation Space, A2, with Censored Data.	
		Deriving Estimators with Censored Data.	
	9.4		218
	9.5	Exercises for Chapter 9.	
	7.5	Exercises for enupter 3.	
10	Im	proving Efficiency and Double Robustness with	
		rsened Data	221
	10.1	Optimal Observed-Data Influence Function Associated with	
		Full-Data Influence Function	221
	10.2	Improving Efficiency with Two	
		Levels of Missingness.	225
		Finding the Projection onto the Augmentation Space.	
		Adaptive Estimation	
		Algorithm for Finding Improved Estimators with	
		Two Levels of Missingness	229
		Remarks Regarding Adaptive Estimators	
		Estimating the Asymptotic Variance	
		Double Robustness with Two Levels of Missingness.	

	Contents	XV
	Remarks Regarding Double-Robust Estimators	236
	Logistic Regression Example Revisited	
,	10.3 Improving Efficiency with Monotone Coarsening	
	Finding the Projection onto the Augmentation Space.	
	Adaptive Estimation.	
	Double Robustness with Monotone Coarsening	
	Example with Longitudinal Data.	
	10.4 Remarks Regarding Right Censoring.	
	10.5 Improving Efficiency when Coarsening	
	Is Nonmonotone	255
	Finding the Projection onto the Augmentation Space.	
	Uniqueness of $M^{-l}(\bullet)$.	
	Obtaining Improved Estimators with Nonmonotone	
	Coarsening	261
	Double Robustness.	
	10.6 Recap and Review of Notation.	
	10.7 Exercises for Chapter 10.	270
11	Locally Efficient Estimators for Coarsened-Data	
	Semiparametric Models	273
	Example: Estimating the Mean with Missing Data	
	11.1 The Observed-Data Efficient Score.	
	Representation 1 (Likelihood-Based).	
	Representation 2 (AIPWCC-Based).	
	Relationship between the Two Representations.	
	$M \sim^l$ for Monotone Coarsening.	
	M^{-1} with Right Censored Data	
	11.2 Strategy for Obtaining Improved Estimators.	
	Example: Restricted Moment Model with Monotone	200
	Coarsening	286
	Some Brief Remarks Regarding Robustness	
	11.3 Concluding Thoughts.	
	11.4 Recap and Review of Notation.	
	11.5 Exercises for Chapter 11.	
	11.5 Exercises for Chapter 11	293
12	Approximate Methods for Gaining Efficiency	205
14	12.1 Restricted Class of AIPWCC Estimators.	
	12.2 Optimal Restricted (Class 1) Estimators.	
	Deriving the Optimal Restricted (Class 1) AIPWCC	500
	Estimator	205
	Estimating the Asymptotic Variance.	307
	12.3 Example of an Optimal Restricted	200
	' (Class 1) Estimator	
	Modeling the Missingness Probabilities	
	12.4 Optimal Restricted (Class 2) Estimators	313

•	~
XV1	Contents

	Logistic Regression Example Revisited.31912.5 Recap and Review of Notation.32112.6 Exercises for Chapter 12.322
13	Double-Robust Estimator of the Average Causal
	Treatment Effect, 323
	13.1 Point Exposure Studies
	13.2 Randomization and Causality
	13.3 Observational Studies 327
	13.4 Estimating the Average Causal Treatment Effect
	Regression Modeling
	13.5 Coarsened-Data Semiparametric Estimators 329
	Observed-Data Influence Functions
	Double Robustness
	13.6 Exercises for Chapter 13
14	Multiple Imputation: A Frequentist Perspective
	14.1 Full- Versus Observed-Data Information Matrix. 342
	14.2 Multiple Imputation. 344
	14.3 Asymptotic Properties of the
	Multiple-Imputation Estimator
	Stochastic Equicontinuity
	14.4 Asymptotic Distribution of the
	Multiple-Imputation Estimator
	14.5 Estimating the Asymptotic Variance
	Consistent Estimator for the Asymptotic Variance
	14.6 Proper Imputation 366
	14.6 Proper Imputation
	Rubin's Estimator for the; Asymptotic Variance
	Summary
	14.7 Surrogate Marker Problem Revisited 371
	How Do We Sample?
Ref	Gerences 375
Ind	ex