Jibamitra Ganguly

Thermodynamics in Earth and Planetary Sciences

Contents

1	Intro	duction	1		
	1.1	Nature and Scope of Thermodynamics	1		
	1.2	Irreversible and Reversible Processes	3		
	1.3	Thermodynamic Systems, Walls and Variables	4		
	1.4	Work	5		
	1.5	Stable and Metastable Equilibrium	9		
	1.6	Lattice Vibrations	10		
	1.7	Electronic Configurations and Effects of Crystal Fields	13		
		1.7.1 Electronic Shells, Subshells and Orbitals	13		
		1.7.2 Crystal or Ligand Field Effects	15		
	1.8	Some Useful Physical Quantities and Units	17		
2	First a	and Second Laws	19		
	2.1	The First Law	20		
	2.2	Second Law: The Classic Statements	22		
	2.3	Carnot Cycle: Entropy and Absolute Temperature Scale	23		
	2.4	Entropy: Direction of Natural Processes and Equilibrium			
	2.5				
		2.5.1 Summary of the Important Relations in the First			
		and Second Laws	33		
	2.6	Entropy and Disorder: Mineralogical Applications	33		
		2.6.1 Configurational Entropy	33		
		2.6.2 Vibrational Entropy	38		
		2.6.3 Configurational vs. Vibrational Entropy	40		
	2.7	First and Second Laws: Combined Statement	43		
	2.8	Condition of Thermal Equilibrium: An Illustrative Application			
		of the Second Law	44		
	2.9	Limiting Efficiency of a Heat Engine and Heat Pump	46		
		2.9.1 Heat Engine	46		
		2.9.2 Heat Pump	47		
		2.9.3 Heat Engines in Nature	49		

xiv Contents

3	Therr	nodynan	nic Potentials and Derivative Properties	. 53
	3.1	Thermo	odynamic Potentials	. 53
	3.2	Equilib	rium Conditions for Closed Systems: Formulations	
		in Term	ns of the Potentials	56
	3.3		s Free in Free Energy?	
	3.4	Maxwe	ell Relations	. 58
	3.5	Thermo	odynamic Square: A Mnemonic Tool	59
	3.6		Pressure and Fugacity	
	3.7		ive Properties	
		3.7.1	Thermal Expansion and Compressibility	
		3.7.2	Heat Capacities	
	3.8	Grüneis	sen Parameter	
	3.9		ependencies of Coefficient of Thermal Expansion	
			mpressibility	71
	3.10		ry of Thermodynamic Derivatives	
			- y	
		_		
4			d Thermochemistry	
	4.1		ird Law and Entropy	
		4.1.1	Observational Basis and Statement	
		4.1.2	Third Law Entropy and Residual Entropy	
	4.2		or of the Heat Capacity Functions	. 76
	4.3		attice Contributions to Heat Capacity and Entropy	
			member Solids	
		4.3.1	Electronic Transitions	
		4.3.2	Magnetic Transitions	
	4.4		nability of Absolute Zero	
	4.5		ochemistry: Formalism's and Conventions	
		4.5.1	Enthalpy of Formation	
		4.5.2	Ĥess' Law	
		4.5.3	Gibbs Free Engrey of Formation	
		4.5.4	Thermochemical Data	88
			,	
5	Critic	al Pheno	menon and Equations of States	91
	5.1	Critical	End Point	91
	5.2	Near- a	nd Super-Critical Properties	95
		5.2.1	Divergence of Thermal and Thermo-Physical Properties	95
		5.2.2	Critical Fluctuations	
		5.2.3	Super- and Near-Critical Fluids	98
	5.3		ritical Properties of Water and Magma-Hydrothermal	
			S	99
	5.4		ons of State	
	-	5.4.1	Gas	
		5.4.2	Solid and Melt	111

Contents xv

6	Phase	Transiti	ons, Melting and Reactions of Stoichiometric Phases	115
	6.1	Gibbs F	Phase Rule: Preliminaries	115
	6.2	Phase T	Transformations and Polymorphism	116
		6.2.1	Thermodynamic Classification of Phase	
			Transformations	
	6.3	Landau	Theory of Phase Transition	119
		6.3.1	General Outline	119
		6.3.2	Derivation of Constraints on the Second Order	
			Coefficient	
		6.3.3	Effect of Odd Order Coefficient on Phase Transition.	124
		6.3.4	Order Parameter vs. Temperature: Second Order	
			and Tricritical Transformations	. 124
		6.3.5	Landau Potential vs. Order Parameter: Implications	
			for Kinetics	
		6.3.6	Illustrative Application to a Mineralogical Problem	
	6.4		ons in the P-T Space	
		6.4.1	Conditions of Stability and Equilibrium	
		6.4.2	P-T Slope: Clayperon-Classius Relation	
	6.5		rature Maximum on Dehydration and Melting Curves	
	6.6		plation of Melting Temperature to High Pressures	
		6.6.1	Kraut-Kennedy Relation	
		6.6.2	Lindemann-Gilvarry Relation	
	6.7		tion of Equilibrium P-T Conditions of a Reaction	
		6.7.1	Equilibrium Pressure at a Fixed Temperature	
		6.7.2	Effect of Polymorphic Transition	143
	6.8		tion of Gibbs Energy and Fugacity at High Pressure	
		•	Equations of States	
		6.8.1	Birch-Murnaghan Equation of State	
		6.8.2	Vinet Equation of State	146
		6.8.3	Redlich-Kwong and Related Equations of State for	
			Fluids F	
	6.9		nemakers' Principles	
		6.9.1	Enumerating Different Types of Equilibria	
		6.9.2	Self-consistent Stability Criteria	
		6.9.3	Effect of an Excess Phase	
	ß	6.9.4	Concluding Remarks	151
~	•			
7			sure, Earth's Interior and Adiabatic Processes	
	7.1		al Pressure	
		7.1.1	Thermodynamic Relations	
		7.1.2	Core of the Earth	
	7.2	7.1.3	Magma-Hydrothermal System	
	7.2		tic Temperature Gradient	
	7.3	-	rature Gradients in the Earth's Mantle and Outer Core	
		7.3.1	Upper Mantle	161

xvi Contents

		7.3.2	Lower Mantle and Core	163
	7.4	Isentropio	Melting in the Earth's Interior	165
	7.5		n's Mantle and Core: Linking Thermodynamics and	
		Seismic V	Velocities	169
		7.5.1	Relations among Elastic Properties and Sound	
			Velocities	169
		7.5.2	Radial Density Variation	171
		7.5.3	Transition Zone in the Earth's Mantle	175
	7.6	Joule-Tho	ompson Experiment of Adiabatic Flow	177
	7.7		Flow with Change of Kinetic and Potential Energies	
		7.7.1	Horizontal Flow with Change of Kinetic Energy:	
			Bernoulli Equation	181
		7.7.2	Vertical Flow	182
	7.8	Ascent of	Material within the Earth's Interior	184
		7.8.1	Irreversible Decompression and Melting of Mantle	
			Rocks	185
		7.8.2	Thermal Effect of Volatile Ascent: Coupling Fluid	
			Dynamics and Thermodynamics	187
			•	
8	Therm	odvnamic	es of Solutions	189
	8.1		Potential and Chemical Equilibrium	
	8.2		olar Properties	
	8.3		ation of Partial Molar Properties	
		8.3.1	Binary Solutions	195
		8.3.2	Multicomponent Solutions	
	8.4	Fugacity a	and Activity of a Component in Solution	200
	8.5		ation of Activity of a Component using Gibbs-Duhem	
		Relation		203
	8.6	Molar Pro	operties of a Solution	205
		8.6.1	Formulations	205
		8.6.2	Entropy of Mixing and Choice of Activity Expression.	
	8.7	Ideal Solu	ation and Excess Thermodynamic Properties	207
		8.7.1	Thermodynamic Relations	207
		8.7.2	Ideality of Mixing: Remark on the Choice of	
			Components and Properties	209
	8.8	Solute and	d Solvent Behaviors in Dilute Solution	
		8.8.1	Henry's Law	210
		8.8.2	Raoult's Law	213
	8.9	Speciation	n of Water in Silicate Melt	215
	8.10		States: Recapitulations and Comments	
	8.11		of a Solution	
		8.11.1	Intrinsic Stability and Instability of a Solution	
		8.11.2	Extrinsic Instability: Decomposition of a Solid Solution	
	8.12	Spinodal,	Critical and Binodal (Solvus) Conditions	
		8.12.1	Thermodynamic Formulations	

Contents xvii

		8.12.2	Upper and Lower Critical Temperatures	. 232
	8.13	Effect of	Coherency Strain on Exsolution	
	8.14	Spinodal	Decomposition	. 236
	8.15	Solvus T	hermometry	. 237
	8.16	Chemica	l Potential in a Field	. 239
		8.16.1	Formulations	. 239
		8.16.2	Applications	. 240
	8.17	Osmotic	Equilibrium	. 244
		8.17.1	Osmotic Pressure and Reverse Osmosis	. 244
		8.17.2	Osmotic Coefficient	. 245
		8.17.3	Determination of Molecular Weight of a Solute	. 246
9	Therm	odynami	c Solution and Mixing Models: Non-electrolytes	. 249
	9.1		utions	
		9.1.1	Single Site, Sublattice and Reciprocal Solution Models	250
		9.1.2	Disordered Solutions	
		9.1.3	Coupled Substitutions	
		9.1.4	Ionic Melt: Temkin and Other Models	
	9.2	Mixing N	Models in Binary Systems	
		9.2.1	Guggenheim or Redlich-Kister, Simple Mixture	
			and Regular Solution Models	257
		9.2.2	Subregular Model	
		9.2.3	Darken's Quadratic Formulation	
		9.2.4	Quasi-Chemical and Related Models	
		9.2.5	Athermal, Flory-Huggins and NRTL (Non-random	
			Two Site) Models	266
		9.2.6	Van Laar Model	
		9.2.7	Associated Solútions	. 270
	9.3	Multicon	nponent Solutions	. 273
		9.3.1	Power Series Multicomponent Models	
		9.3.2	Projected Multicomponent Models	
		9.3.3	Comparison Between Power Series and Projected	
			Methods	277
		9.3.4	Estimation of Higher Order Interaction Terms	
		9.3.5	Solid Solutions with Multi-Site Mixing	
		9.3.6	Concluding Remarks	
10	Eanibl	<i>8</i> bria Invol	ving Solutions and Gaseous Mixtures	281
10	10.1		nd Equilibrium Condition of a Reaction	
	10.2		ee Energy Change and Affinity of a Reaction	
	10.2		ase Rule and Duhem's Theorem	
	10.5	10.3.1	Phase Rule	
		10.3.1	Duhem's Theorem	
	10.4		um Constant of a Chemical Reaction	
	10.7	10.4.1	Definition and Relation with Activity Product	289

xviii Contents

		10.4.2	Pressure and Temperature Dependences	
			of Equilibrium Constant	291
	10.5		s Reactions	
		10.5.1	Condensation of Solar Nebula	
		10.5.2	Surface-Atmosphere Interaction in Venus	. 296
		10.5.3	Metal-Silicate Reaction in Meteorite Mediated	
			by Dry Gas Phase	297
		10.5.4	Effect of Vapor Composition on Equilibrium	
			Temperature: T vs. X _v Sections	299
		10.5.5	Volatile Compositions: Metamorphic and Magmatic	
			Systems	
	10.6	Equilibri	um Temperature Between Solid and Melt	
		10.6.1	Eutectic and Peritectic Systems	
		10.6.2	Systems Involving Solid Solution	
	10.7		oic Systems	
	10.8	Reading	Solid-Liquid Phase Diagrams	. 312
		10.8.1	Eutectic and Peritectic Systems	. 312
		10.8.2	Crystallization and Melting of a Binary Solid Solution	. 314
		10.8.3	Intersection of Melting Loop and a Solvus	. 315
		10.8.4	Ternary Systems	. 317
	10.9	Natural S	Systems: Granites and Lunar Basalts	. 319
		10.9.1	Granites	. 319
		10.9.2	Lunar Basalts	
	10.10	Pressure	Dependence of Eutectic Temperature and Composition	. 322
	10.11	Reaction	s in Impure Systems	. 324
		10.11.1	Reactions Involving Solid Solutions	. 324
		10.11.2	Solved Problem	. 329
		10.11.3	Reactions Involving Solid Solutions and Gaseous	
			Mixture	331
	10.12	Retrieval	of Activity Coefficient from Phase Equilibria	. 335
	10.13	Equilibri	um Abundance and Compositions of Phases	. 337
		10.13.1	Closed System at Constant P-T	. 337
		10.13.2	Conditions Other than Constant P-T	
			₽ [*]	
11	Eleme	nt Fractio	onation in Geological Systems	. 347
	11.1	Fractiona	ation of Major Elements	. 347
		11.1.1.1	Exchange Equilibrium and Distribution Coefficient	. 347
		11:1.2	Temperature and Pressure Dependence of K _D	. 349
		11.1.3	Compositional Dependence of K _D	. 350
		11.1.4	Thermometric Formulation	
	11.2	Trace Ele	ement Fractionation Between Mineral and Melt	
		11.2.1	Thermodynamic Formulations	. 354
		11.2.2	Illustrative Applications	
		11.2.3	Estimation of Partition Coefficient	
				-

Contents xix

	11.3	Metal-Silicate Fractionation: Magma Ocean and Core Formation . 363
		11.3.1 Pressure Dependence of Metal-Silicate
		Partition Coefficients
		11.3.2 Pressure Dependence of Metal-Silicate
		Distribution Coefficients
		11.3.3 Pressure Dependencies of Ni vs. Co Partition- and
		Distribution-Coefficients
	11.4	Effect of Temperature and f(O2) on Metal-Silicate Partition
		Coefficient
12	Electro	olyte Solutions and Electrochemistry
	12.1	Chemical Potential
	12.2	Activity and Activity Coefficients: Mean Ion Formulations 377
	12.3	Mass Balance Relation
	12.4	Standard State Convention and Properties
		12.4.1 Solute Standard State
		12.4.2 Standard State Properties of Ions
	12.5	Equilibrium Constant, Solubility Product &
		Ion Activity Product
	12.6	Ion Activity Coefficients and Ionic Strength
		12.6.1 Debye-Hückel and Related Methods
		12.6.2 Mean-Salt Method
	12.7	Multicomponent High Ionic Strength and High P-T Systems 385
	12.8	Activity Diagrams of Mineral Stabilities
		12.8.1 Method of Calculation
		12.8.2 Illustrative Applications
	12.9	Electrochemical Cells and Nernst Equation
		12.9.1 Electrochemical Cell and Half-cells
		12.9.2 Emf of a Cell and Nernst Equation
		12.9.3 Standard Emf of Half-Cell and Full-Cell Reactions 398
	12.10	Hydrogen Ion Activity in Aqueous Solution: pH and Acidity 399
	12.11	Eh-pH Stability Diagrams
	12.12	Chemical Model of Sea Water
		į.
13	Surfac	ee Effects
	13.1	Surface Tension and Energetic Consequences
	13.2	Surface Thermodynamic Functions and Adsorption
	13.3	Temperature, Pressure and Compositional Effects on Surface
		Tension
	13.4	Crack Propagation
	13.5	Equilibrium Shape of Crystals
	13.6	Contact and Dihedral Angles
	13.7	Dihedral Angle and Interconnected Melt or Fluid Channels 423
		13.7.1 Connectivity of Melt Phase and Thin Melt Film in
		Rocks
		10010

xx Contents

	13.7.2 Core Formation in Earth and Mars	425
13.8	Surface Tension and Grain Coarsening	428
13.9	Effect of Particle Size on Solubility	430
13.10	Coarsening of Exsolution Lamellae	432
13.11	Nucleation	434
	13.11.1 Theory	434
	13.11.2 Microstructures of Metals in Meteorites	436
13.12	Effect of Particle Size on Mineral Stability	438
Appendix A		443
A.1	Rate of Entropy Production: Conjugate Flux and Force in	
	Irreversible Processes	
A.2	Relationship Between Flux and Force	447
A.3	Heat and Chemical Diffusion Processes: Comparison with	
	the Empirical Laws	448
A.4	Onsager Reciprocity Relation and Thermodynamic	
	Applications	450
Appendix F		
B.1	Total and Partial Differentials	453
B.2	State Function, Exact and Inexact Differentials, and Line	
	Integrals	
B.3	Reciprocity Relation	
B.4	Implicit Function	
B.5	Integrating Factor	
B.6	Taylor Series	459
Appendix (Estimation of Thermodynamic Properties of Solids	461
C .1	Estimation of Cp and S' of End-Members from Constituent	
	Oxides	
	C.1.1 Linear Combination of Components	
	C.1.2 Volume Effect on Entropy	
	C.1.3 Electronic Ordering Effect on Entropy	
C.2	Polyhedral Approximation: Enthalpy, Entropy and Volume	
C.3	Estimation of Enthalpy of Mixing	
	C.3.1 Elastic Effect	
	C.3.2 Crystal-Field Effect	468
References		471
Author Ind	ex	491
	lex	
Subject III	ICA	サフィ