Bjørn Felsager

Geometry, Particles, and Fields

With 219 Illustrations

Contents

Preface	v
PART I. BASIC PROPERTIES OF PARTICLES AND FIELDS	1
1. Electromagnetism	3
1.1. The Electromagnetic Field	3
1.2. The Introduction of Gauge Potentials in Electromagnetism	7
1.3. Magnetic Flux	11
1.4. Illustrative Example: The Gauge Potential of a Solenoid	14
1.5. Relativistic Formulation of the Theory of Electromagnetism	20
1.6. The Energy–Momentum Tensor	23
Solutions to Worked Exercies	28
2. Interaction of Fields and Particles	32
2.1. Introduction	32
2.2. The Lagrangian Formalism for Particles:	
The Nonrelativistic Case	33
2.3. Basic Principles of Quantum Mechanics	40
2.4. Path Integrals: The Feynman Propagator	43
2.5. Illustrative Example: The Free Particle Propagator	47
2.6. The Bohm-Aharonov Effect: The Lorentz Force	51
2.7. Gauge Transformation of the Schrödinger Wave Function	56
2.8. Quantum Mechanics of a Charged Particle as a Gauge Theory	59
2.9. The Schrödinger Equation in the Path Integral Formalism	63
2.10. The Hamiltonian Formalism	67
2.11. Canonical Quantization and the Schrödinger Equation	70
2.12. Illustrative Example: Superconductors and Flux Quantization	74
Solutions to Worked Exercises	81
3. Dynamics of Classical Fields	86
3.1. Illustrative Example: The Lagrangian Formalism for a String	86
3.2. The Lagrangian Formalism for Relativistic Fields	90

	٠	٠	_	
V١	1	1	Contents	

	3.3.	The Hamiltonian Formalism for Relativistic Fields	94
	3.4.	The Klein-Gordon Field	99
	3.5.	The Maxwell Field	102
	3.6.	Spin of the Photon – Polarization of Electromagnetic Waves	107
		The Massive Vector Field	112
	3.8.	The Cauchy Problem	113
	3.9.	The Complex Klein-Gordon Field	118
	3.10.	The Theory of Electrically Charged Fields as a Gauge Theory	121
	3.11.	Charge Conservation as a Consequence of Gauge Symmetry	124
	3.12.	The Equivalence of Real and Complex Field Theories	127
		Solutions to Worked Exercises	129
4.	Solito	ons	133
	4.1.	Nonlinear Field Theories with a Degenerate Vacuum	133
		Topological Charges	138
		Solitary Waves	142
	4.4.	Ground States for the Nonperturbative Sectors	145
	4.5.	Solitons	150
	4.6.	The Bäcklund Transformation	156
		Dynamical Stability of Solitons	160
	4.8.	The Particle Spectrum in Nonlinear Field Theories	167
		Solutions to Worked Exercises	172
5.	Path Integrals and Instantons		
	5.1.	The Feynman Propagator Revisited	176
	5.2.	Illustrative Example: The Harmonic Oscillator	181
		The Path Integral Revisited	191
		Illustrative Example: The Time-Dependent Oscillator	198
		Path Integrals and Determinants	203
		The Bohr–Sommerfield Quantization Rule	207
		Instantons and Euclidean Field Theory	221
		Instantons and the Tunnel Effect	227
		Instanton Calculation of the Low-Lying Energy Levels	234
	5.10.	Illustrative Example: Calculation of the Parameter Δ	244
		Solutions to Worked Exercises	253
P	art I	I. BASIC PRINCIPLES AND APPLICATIONS OF	
		DIFFERENTIAL GEOMETRY	255
6	Diffe	rentiable Manifolds—Tensor Analysis	257
٠.		·	
		Coordinate Systems Differentiable Manifolds	257
			264
		Product Manifolds and Manifolds Defined by Constraints	271 278
		Tangent Vectors Metrics	285
	U.J.	IVICUICA	40.

		Contents	ix
66	The Minkowski Space		292
	The Action Principle for a Relativistic Particle		300
	Covectors		309
	Tensors		318
	Tensor Fields in Physics		327
	Solutions to Worked Exercises		330
7. Diffe	rential Forms and the Exterior Calculus		334
7.1.	Introduction		334
7.2.	k-Forms—The Wedge Product		336
7.3.	The Exterior Derivative		345
7.4.	The Volume Form		351
7.5.	The Dual Map		360
	The Codifferential and the Laplacian		367
	Exterior Calculus in 3 and 4 Dimensions		373
7.8.	Electromagnetism and the Exterior Calculus		383
	Solutions to Worked Exercises		392
8. Integ	ral Calculus on Manifolds		402
8.1.	Introduction		402
	Submanifolds—Regular Domains		404
	The Integral of Differential Forms		412
	Elementary Properties of the Integral		420
	The Hilbert Product of Two Differential Forms		430
	The Lagrangian Formalism and the Exterior Calculus		434
	Integral Calculus and Electromagnetism		438
	The Nambu String and the Nielsen-Olesen Vortex		453
8.9.	Singular Forms		466
	Solutions to Worked Exercises		474
	c Monopoles		484
	Magnetic Charges and Currents		484
	The Dirac String		491
	Dirac's Lagrangian Principle for Magnetic Monopoles		498
	The Angular Momentum Due to a Monopole Field		505
	Quantization of the Angular Momentum		510
	The Gauge Transformation as a Unitary Transformation	l	517
9.7.	Quantization of the Magnetic Charge		520
	Solutions to Worked Exercises		523
10. Sm	ooth Maps—Winding Numbers		534
	Local Properties of Smooth Maps		534
	Pullbacks of Cotensors		543
	Isometries and Conformal Maps		553
10.4.	The Conformal Group		562

X	Conten	

10.5.	The Dual Map	574
10.6.	The Self-Duality Equation	576
10.7.	Winding Numbers	586
10.8.	The Heisenberg Ferromagnet	594
10.9.	The Exceptional ϕ^4 -Model	603
	Solutions to Worked Exercises	607
11. Syn	nmetries and Conservation Laws	614
11.1.	Conservation Laws	614
11.2.	Symmetries and Conservation Laws in Quantum Mechanics	619
11.3.	Conservation of Energy, Momentum and Angular Momentum	
	in Quantum Mechanics	624
11.4.	Symmetries and Conservation Laws in Classical Field Theory	628
11.5.	Isometries as Symmetry Transformations	634
11.6.	The True Energy-Momentum Tensor for Vector Fields	639
11.7.	Energy-Momentum Conservation as	
	a Consequence of Covariance	642
11.8.	Scale Invariance in Classical Field Theories	647
11.9.	Conformal Transformations as Symmetry Transformations	654
	Solutions to Worked Exercises	661
Index		667