

Quantum Logic in Algebraic Approach

by

Miklós Rédei

Faculty of Natural Sciences, Loránd Eötvös University, Budapest, Hungary

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

Table of Contents

	Preface	ix				
1	Introduction	1				
	1.1 Bibliographic notes	8				
2	Observables and states in the Hilbert space formalism of					
	quantum mechanics	11				
	2.1 Observables	11				
	2.2 States	20				
	2.3 Bibliographic Notes	27				
3	Lattice theoretic notions	29				
	3.1 Basic notions in lattice theory	29				
	3.2 Bibliographic notes	43				
4	Hilbert lattice					
	4.1 Hilbert space and the lattice of subspaces	45				
	4.2 Subspaces and projections	54				
	4.3 Bibliographic notes	60				
5	Physical theory in semantic approach	61				
	5.1 Physical theory as semi-interpreted language	61				
	5.2 The logic of classical mechanics	64				
	5.3 Hilbert lattice as logic	68				
	5.4 Bibliographic notes	74				
6	Von Neumann lattices	77				
	6.1 Von Neumann algebras	77				
	6.2 Von Neumann lattices	82				
	6.3 Appendix: proofs of propositions related to the classification					
	theory of von Neumann algebras	90				
	6.4 Bibliographic notes	100				

7	The	Birkhoff-von Neumann concept of quantum logic	103
	7.1	Quantum logic as event structure of non-commutative	
		probability	103
		7.1.1 Digression: von Neumann's concept of probability in	
		quantum mechanics in the years $1926-1932$	105
		7.1.2 Back to the type II_1 factor \ldots	112
	7.2	Probability is logical	113
	7.3	Bibliographic notes	116
8	Qua	ntum conditional and quantum conditional probability	119
	8.1	Minimal implicative criteria and quantum conditional	119
	8.2	Conditional probability and statistical inference	127
	8.3	Breakdown of Stalnaker's Thesis in quantum logic	134
	8.4	Bibliographic notes	137
9	The	problem of hidden variables	139
	9.1	Historical remarks	139
	9.2	Notion of and no-go results on dispersive hidden theories.	144
		9.2.1 Definition of dispersive hidden theory	144
		9.2.2 Negative results on dispersive hidden theories	149
	9.3	No-go results on entropic hidden theories	156
	9.4	The problem of local hidden variables	160
		9.4.1 Bell's question and Bell's inequality	160
		9.4.2 No-go proposition on dispersive local hidden theories	164
	9.5	Bibliographic notes	169
10	Viol	ation of Bell's inequality in quantum field theory	171
	10.1	Basic notions of algebraic quantum field theory	171
	10.2	Bell correlation and Bell's inequality	180
	10.3	Violation of Bell's inequality in quantum field theory	184
	10.4	Superluminal correlations in quantum field theory	188
	10.5	Bibliographic notes	190
11	Inde	ependence in quantum logic approach	191
	11.1	Logical independence in quantum logic	193
		11.1.1 Logical notions of independence	193
		11.1.2 Logical and statistical independence	197
	11.2	Counterfactual probabilistic independence	204
		11.2.1 Concept of counterfactual probabilistic independence	205
		11.2.2 Counterfactual probabilistic independence in quantum	
		field theory	207
	11.3	Bibliographic notes	213

12	Reichenbach's common cause principle and quantum field			
	thec	ory	215	
	12.1	Reichenbach's common cause principle	216	
	12.2	Do superluminal correlations have a probabilistic common		
		cause?	219	
	12.3	Bibliographic notes	224	
	Refe	rences	227	
	Inde	x.	235	

•••

`