OPTIMIZATION IN PUBLIC TRANSPORTATION

Stop Location, Delay Management and Tariff Zone Design in a Public Transportation Network

By

ANITA SCHOBEL
Georg-August University, Gottingen, Germany
Contents

Cvistomer-oriented Traffic Planning ... 1
 1.1 Customer-oriented Transportation ... 1
 1.2 Public Transportation Network and Customer Data 5

Part I Stop Location

2 Introduction ... 11
 2.1 Application .. 13
 2.2 Literature Review .. 14
 2.3 A Model for Continuous Stop Location 15

3 Covering All Demand Points .. 21
 3.1 Feasibility and Complexity of Complete Cover 22
 3.2 A Finite Dominating Set .. 24
 3.3 Complete Cover Along a Polygonal Line 29
 3.4 Set Covering With Consecutive Ones Property 32
 3.5 Complete Cover in a Realistic Network 40
 3.6 Set Covering With Almost Consecutive Ones Property 46

4 Bicriteria Stop Location .. 59
 4.1 Constraint Problems and Lexicographic Minimality 60
 4.2 Integer Programming Formulations 62
 4.3 Bicriteria Set Covering With Consecutive Ones Property 65
 4.4 Varying the Radius ... 71

5 Extensions ... 75
 5.1 Covering Demand Regions .. 76
 5.2 Minimizing the Total Door-to-door Travel Time 85
Part II Delay Management

6 Introduction .. 95
 6.1 Application ... 97
 6.2 Related Literature ... 98
 6.3 A Model for the Delay Management Problem 100
 6.4 Event-activity Networks in Delay Management 104

7 Delay Management With Fixed Connections 109
 7.1 Linear Programming Approach 110
 7.2 Relation to the Critical Path Method 111
 7.3 Relation to the Feasible Differential Problem 115

8 Minimizing the Sum of All Delays 119
 8.1 A Linear Model ... 121
 8.2 Activity-based Model 125
 8.3 Constant Weights and the Never-meet Property 133
 8.4 A Simple Special Case 145
 8.5 Solving the model with constant weights 147
 8.6 Solving the Total Delay Management Problem 163

9 The Bicriteria Delay Management Problem 175
 9.1 A First Analysis ... 176
 9.2 Integer Programming Formulation 179
 9.3 Lexicographic and Supported Efficient Solutions 180
 9.4 Finding All Efficient Solutions 182

10 Extensions .. 195
 10.1 The General Delay Management Problem 195
 10.2 Railway and Bus Specific Requirements 201

Part III Tariff Planning

11 Introduction .. 207
 11.1 Frequently Used Tariff Systems 208
 11.2 Application ... 212
 11.3 Literature Review 213
 11.4 A Model for the Zone Design Problem 213

12 Finding Zones and Zone Prices 219
 12.1 The Fare Problem 220
 12.2 The Maximum Deviation Zone Design Problem 224
 12.3 Extensions for Real-world Problems 232
<table>
<thead>
<tr>
<th>A</th>
<th>Integer Programming</th>
<th>237</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bicriteria Optimization</td>
<td>239</td>
</tr>
<tr>
<td>C</td>
<td>Gauges as Distance Measures</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>EVequently Used Notation</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>List of the Main Problems</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>265</td>
</tr>
</tbody>
</table>