

Von der Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Carolo-Wilhelmina zu Braunschweig

> zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

> > genehmigte

Dissertation

von

Dipl.-Ing. Olaf Pollakowski

aus Braunschweig

Eingereicht am: Mündliche Prüfung am: Berichterstatter: Mitberichterstatter: 12.10.1998

20.04.1999

Prof. Dr.-Ing. W. Schumacher Prof. Dr.-Ing. M. Lindmayer

dandelon.com

1999

Contents

Table of Symbols						
1						
	1.1	Outline of the Chapters	3			
2	Theoretical Foundations					
	2.1	Representations of Instantaneous Three-Phase Variables	4			
	2.2	Three-Phase Power Theory	9			
		2.2.1 Overview of Instantaneous Active Reactive Power Theories	9			
		2.2.2 Instantaneous Active Reactive Power Theory	10			
		2.2.3 Properties of the Instantaneous Active and Reactive Powers	11			
		2.2.4 Simplifications for Three-Phase Three-Wire Systems	11			
		2.2.5 Modifications for Power Variant Transformations	12			
3	Bas	sic Principles of Power Conditioners	14			
	3.1	Two-Machine-Model of Power Systems	14			
	3.2	Shunt- and Series-Type Compensation	14			
	3.3	Benefits of Power Conditioners for Power Systems	15			
		3.3.1 Compensation of Power Transmission Systems	15			
		3.3.2 Compensation of Power Distribution Systems	16			
	3.4	Classical Power Conditioners and their Shortcomings	16			
	3.5	Advanced Power Conditioners Based on Solid-State Switching Converters	17			
		3.5.1 Operation Principles	18			
		3.5.2 Control Modes	19			
		3.5.3 Application of the Instantaneous Reactive Power Theory	20			
		3.5.4 High-Power Inverter Circuits	22			
4	Mu	Multi-Level Inverters				
	4.1	Multi-Level Inverter Topologies	24			
		4.1.1 Diode-Clamped Multi-Level Inverters	24			
		4.1.2 Flying-Capacitor Multi-Level Inverters	26			
		4.1.3 Cascaded Inverters with Separate DC-Sources	27			
		4.1.4 Multiple Inverter Modules	30			
	4.2	Modulation Techniques	32			
		4.2.1 Fundamental Frequency Modulation Method	32			
		4.2.2 Pulse-Width Modulation Methods	39			
		4.2.3 PWM at Low Switching Frequencies	44			
	4.3	Switching Functions	46			
		4.3.1 Definition	46			
		4.3.2 Diode-Clamped Multi-Level Inverter	47			
		4.3.3 Flying-Capacitor Multi-Level Inverter	48			
		4.3.4 Cascaded Inverters with Separate DC-Sources	50			
	4.4	Steady-State Analysis of the Inverter DC-Side	52			
		4.4.1 Diode-Clamped Multi-Level Inverter	52			

		4.4.2	Flying-Capacitor Multi-Level Inverter	52				
		4.4.3	Cascaded Inverters with Separate DC-Sources	53				
-	~			. .				
5			on of Multi-Level Inverters	54				
	5.1		Rating	54				
	5.2		onic Performance	55				
	5.3		f Semiconductor Devices	56				
	5.4		f Redundancy	56				
	5.5		f DC-Capacitors	57				
	5.6		f Transformers	58				
	5.7		tion of Switching Devices in Fault-Cases	58				
	5.8		lexity of DC-Voltage Balancing	59				
	5.9	Insulat	tion and Packing	59				
	5.10	Efficier	ncy	59				
	5.11	Electro	omagnetic Compatibility	59				
	5.12	Conclu	lsion	60				
6			ace Models	61				
	6.1		Clamped Multi-Level Inverters	61				
		6.1.1	Fundamental Frequency Model	65				
		6.1.2	Alternative Model with a Different Set of State Variables	69				
		6.1.3	Reduced-Order Model	75				
		6.1.4	Transfer-Function Description	77				
	6.2	Cascac	led Inverters with Separate DC-Sources	78				
		6.2.1	Model in the abc-Reference Frame	78				
		6.2.2	Model in the dq-Reference Frame	79				
		6.2.3	Alternative Model	81				
		6.2.4	Reduced-Order Model	82				
	6.3		tion Model	83				
	6.4	Inclusion of the Load in the Model						
-	D		Numerate Clausteral	86				
7	Rea 7.1		Current Control	86 86				
	1.1	7.1.1	ve Current Control with Variable DC-Voltage	86				
		7.1.2	Analysis of the System	86				
		7.1.3	PI-Control	92				
		7.1.4	Pole Placement via State-Feedback	93				
		7.1.5	RST-Control	101				
		7.1.6	H_{∞} -Control	105				
		7.1.7	Comparison of the Different Control Systems	106				
		7.1.8	Simulation Results for other Multi-Level Inverters	106				
		7.1.9	Effects of Power Line Voltage Distortion and Unbalance	107				
	7.2		ve Current Control with Constant DC-Voltage	110				
		7.2.1	Performance Specifications	110				
		7.2.2	Cascaded Control Structure	110				
		7.2.3	State-Feedback with Integral Action	115				

		7.2.4	Comparison between the Classical and Multivariable Approach	116						
		7.2.5	Simulation Results for other Multi-Level Inverters	116						
		7.2.6	Comparison between the Control Modes	117						
		7.2.7	Compensation of Unbalanced Currents	117						
8			e Balancing	118						
	8.1		Clamped 3-Level Inverters	118						
		8.1.1	Open-Loop Analysis	118						
		8.1.2	Closed-Loop Analysis	119						
		8.1.3	Influence of Power Line Voltage Distortion and Unbalance	124						
		8.1.4	Influence of the Reactive Current Controller	124						
		8.1.5	Controllers with a Notch at 150 Hz	127						
		8.1.6	Influence of a Prefilter	128						
		8.1.7	Influence of the Instant of the Reactive Current Reference Change	128						
		8.1.8	Active Control of the DC-Voltages by Shifting the Switching Instants	128						
		8.1.9	Indirect Displacement by Disturbance Feedforward	129						
			Indirect Displacement by Controlled Disturbance Feedforward	130						
			Direct Displacement	131						
	8.2		Clamped 5-Level Inverter	136						
		8.2.1	Open-Loop Analysis	136						
		8.2.2	Closed-Loop Analysis	136						
		8.2.3	Active Control of the DC-Voltages by the Phase-Shift Technique	137						
		8.2.4	Active Control of the DC-Voltages by a DC-Voltage Balancing Circuit	140						
8.3 Multiple Diode-Clamped 3-Level Inverters				141						
		8.3.1	Two 3-Level Inverters Using no Phase-Shifting Transformers	142						
		8.3.2	Two 3-Level Inverters Using Phase-Shifting Transformers	146 151						
	8.4 Cascaded Inverters with Separate DC-Sources									
		8.4.1	Open-Loop Analysis	151						
		8.4.2	Closed-Loop Analysis	151						
		8.4.3	Influence of Unbalanced and Harmonic Currents	152						
		8.4.4	Active Control of the DC-Voltages	152						
9	Con	clusior	a	153						
A	Fou	rier Se	ries of the Switching Functions	155						
в	DC-	Voltag	e Balancing Circuit	158						
С	Stea	ady-Sta	ate Solutions	159						
D	DC-	Curre	nts	160						
	Current into the Neutral Point									
	- 41			161						
Bi	Bibliography 16									