Ansgar Schleicher

Management of Development Processes

An Evolutionary Approach

With a Foreword by Prof. Dr.-Ing. Manfred Nagl

A 234996

Deutscher Universitäts-Verlag

Contents

1	Introduction	1
	1.1 Process Management	2
	1.1.1 Scope of Development Process Management	4
	1.1.2 Benefits of Development Process Management	6
	1.1.3 Characterization of Development Processes	7
	1.1.4 Existing Systems for Process Management	8
	1.1.5 Scope of this Book	13
	1.2 Concepts and Practices for Process Management Systems	14
	1.2.1 Layers of Modeling	15
	1.2.2 System Architecture	22
	1.3 The Challenge of Development Process Management	24
	1.3.1 Dynamism in Development Processes	24
	1.3.2 Vagueness in Process Management	25
	1.3.3 Consequences	27
	1.4 A Conceptual Framework for Process Evolution Support	28
	1.4.1 Role of the Framework	29
	1.4.2 Overview	29
	1.4.3 Requirements on the Layers	31
	1.4.4 New Relationships between the Layers	34
	1.4.5 A Conceptual System Architecture	37
	1.4.6 Relating Process Management Systems to the Framework	40
	1.4.7 Relation to other Conceptual Frameworks	43
	1.5 Contributions of this Book	47
	1.6 Originality of the Approach	50
2	A Sample Development Process	53
	2.1 A Technical Development Domain: Chemical Engineering	53
	2.1.1 Scope of Chemical Engineering	53
	2.1.2 Methods and Techniques	54
	2.2 A Sample Process in Chemical Engineering	56
	2.2.1 Polyamide 6	57
	2.2.2 The Development Product	58
	2.2.3 The Development Process	62
	2.2.4 Characterization of the Sample Process	64
3	A Meta Model for Evolution Support : Dynamic Task Nets	67
	3.1 Dynamic Task Nets by Example	68
	3.1.1 Language Elements	68

	3.1.2 Behavior of Dynamic Task Nets	71
	3.1.3 The Polyamide 6 Process as a Dynamic Task Net	73
	3.2 A Formal Meta Model	78
	3.2.1 The Specification Language PROGRES	78
	3.2.2 The Structural Base Model	80
	3.2.3 The Dynamic Semantics	89
	3.3 Support for Process Evolution	97
	3.4 Related Process Meta Models	99
	3.4.1 Process Programming	99
	3.4.2 Attributed Grammars	99
	3.4.3 Petri Nets	100
	3.4.4 Rules	101
	3.5 Summary	102
4	UML-based Process Model Definition	103
	4.1 Requirements for Process Model Definition	103
	4.2 Design Decisions	104
	4.3 Mapping the DYNAMITE Meta Model onto UML	106
	4.3.1 Motivation for Domain Meta Modeling	106
	4.3.2 Evaluation Schema	110
	4.3.3 Stereotypes as a Meta Modeling Construct	110
	4.3.4 Meta Model Extensions	113
	4.3.5 Comparison	116
	4.3.6 The Meta Modeling Approach Followed in this Work	117
	4.4 Structural Process Model Definition with the UML	118
	4.4.1 Options for Structural Modeling in the UML	119
	4.4.2 Class Diagrams for Type-level Process Model Definition	120
	4.4.3 Collaboration Diagrams for Instance-level Process Model Definition	124
	4.5 Behavioral Process Model Definition with the UML	127
	4.5.1 Possibilities for Behavioral Process Model Definition	128
	4.5.2 Behavioral Patterns in Detail	135
	4.5.3 Collaboration Diagrams in Detail	140
	4.6 Model Structuring	144
	4.7 Related Approaches	145
	4.7.1 Meta Modeling Approaches for the UML	145
	4.7.2 Process Model Definition Languages	146
	4.8 Summary	147
5	Interpreting Process Model Definitions	149
	5.1 Overview	149
	5.2 Transforming UML-based Process Model Definitions to PROGRES	151
	5.2.1 Formalisms	152
	5.2.2 Prerequisites for the Transformation	153

	5.2.3 Transforming Class Diagrams	154
	5.2.4 Transforming Collaboration Diagrams	163
	5.3 On the Notion of Consistency	170
	5.4 An Example	172
	5.5 Propagation of Inconsistencies through a Task Net	175
	5.6 Inconsistency Elimination	178
	5.7 Formal Specification	181
	5.7.1 The Consistency Checks	182
	5.7.2 Specification of Consistency Checks	183
	5.8 Discussion and Related Approaches	189
	5.8.1 Real-World Inconsistencies	191
	5.8.2 Model Inconsistencies	193
	5.9 Summary	195
6	Infering Process Model Definition Knowledge	197
	6.1 Scope	197
	6.2 Knowledge Sources	199
	6.2.1 Obtaining New Structural Knowledge	200
	6.2.2 Obtaining New Behavioral Knowledge	201
	6.3 An Inference Mechanism for Task Types	203
	6.3.1 Prerequisites: A Semantical Product Model	204
	6.3.2 Deriving Initial Task Types	205
	6.3.3 An Algorithm for Affinity Calculation	206
	6.3.4 Discussion of Abstract Examples	208
	6.3.5 Clustering	209
	6.3.6 Effects on the Process Model Definition Knowledge Base	210
	6.3.7 Application to the Polyamide 6 Plant Development Process	211
	6.4 An Inference Mechanism for Realization Types	214
	6.4.1 Deriving Initial Realization Types	215
	6.4.2 An Algorithm for Affinity Calculation	216
	6.4.3 Discussion of Abstract Examples	219
	6.4.4 Application to the Polyamide 6 Plant Development Process	220
	6.5 Discussion	222
	6.6 Related Approaches	224
	6.6.1 Process Improvement	224
	6.6.2 Process Model Inference	226
	6.6.3 Database Administration Tools	226
	6.6.4 Type Inference in Programming Languages	227
	6.7 Summary	228
7	Process Model Definition Evolution and Task Net Migration	229
	7.1 Scope	229
	7.2 Requirements	230

xv

	7.3 0	Changing Process Model Definitions	231
	7.3.1	State of the Art in Object-Oriented Database Management Systems	232
	7.3.2	Conceptual Approach	234
	7.3.3	Permitted Changes	235
	7.3.4	Propagation of Changes through the Process Model Definition	237
	7.3.5	An Example	239
	7.3.6	Avoiding a Version Chaos	239
	7.3.7	Effects on the Transformation to PROGRES	240
	7.4 1	Task Net Migration	242
	7.4.1	Possible Solutions	242
	7.4.2	Using Inconsistency Toleration for Task Net Migration	244
	7.4.3	Automated Migration	247
	7.4.4	Formal Specification	248
		Related Approaches in Process Management Systems	256
	7.6 S	ummary	259
8	The Man	agement System: Implementation and User Interface	261
	8.1 C	Dverview	261
	8.2 F	rocess Model Definitions in Rational Rose	263
	8.2.1	A Design Overview	264
	8.2.2	User Interface of the Process Model Definition Tools	269
	8.3 F	Process Management Tools	268
	8.3.1	Tool Generation	270
	8.3.2	Design Overview	271
	8.3.3	User Interface	277
	8.4 7	The Inference Tool	280
	8.4.1	Design Overview	280
	0.4.1		
		User Interface	284
	8.4.2	User Interface Summary	284 284
9	8.4.2	Summary	

References

291