THE FINITE ELEMENT METHOD APPLIED TO ROTATING ELECTRICAL MACHINES

ΒY

PER BERGET

JANUARY 1978

THE UNIVERSITY OF TRONDHEIM THE NURWEGIAN INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT POWER SECTION

THE FINITE ELEMENT METHOD APPLIED

TO ROTATING ELECTRICAL MACHINES

CONTENTS

				Page	
PR	PREFACE				
SU	UMMARY				
1	INTRODUCTION				
2 [`]	BASIC THEORY			4	
	2.1 Equations and Methods				
		2.1.1	Analytical methods	6	
		2.1.2	Numerical methods	10	
	2.2	The Fi	nite Element Method	14	
		2.2.1	The finite element method in its basic		
			form	14	
		2.2.2	Time varying magnetic fields	21	
		2.2.3	Electrical connections of elements	27	
		2.2.4	I ² R losses	34	
		2.2.5	Sinusoidal magnetic fields	36	
		2.2.6	Boundary conditions	40	
		2.2.7	Bandwidth	50	
		2.2.8	Adaption of the element method to		
			rotating electric machines	55	
		2.2.9	Torque calculations and rotor motion	62	
3	COMPUTER PROGRAMS			70	
	3.1	.1 Program Structure			
	3.2	3.2 Comparison between Real and Complex Calculations			

4 APPLICATIONS

4.1	Additi	onal Losses in Asynchronous Machines	89			
4.2	Synchr	onous Machine Damper Bar Analysis	92			
	4.2.1	General considerations	92			
	4.2.2	Voltage between damper winding rings	94			
	4.2.3	Sample calculation	98			
	4.2.4	Results of the calculations	101			
	4.2.5	Discussion of results	108			
Diagrams of results:						
	Damper	bar currents - unloaded	118			
	Damper	bar currents - rated load	121			
	Oscill	ations at transient load	127			
	Air ga	p flux density	129			
	Torque	curves	132			
CONCLUSION						

APPENDIX

Al. Solution of the integral

$$I = \iint (a_{\ell} + b_{\ell} x + c_{\ell} y) (a_{m} + b_{m} x + c_{m} y) dxdy$$
 137
$$\Delta$$

REFERENCES

.

5

,

148

.

89