NON-LINEAR DYNAMIC ANALYSIS OF SPACE-FRAMED OFFSHORE STRUCTURES

by

1

Xu Jun

.

Trondheim, October 1988

Division of Marine Structures The University of Trondheim The Norwegian Institute of Technology

.

. . .

TABLE OF CONTENT

Page

ABSTRACT				
ACKNOWLEDGEMENT				
NOTATION			VII	
1.	INTRO	DDUCTION		
	1.1	General	1.1	
	1.2	Brief survey of previous work	1.3	
		1.2.1 Component behaviour	1.3	
		1.2.2 Non-linear analyses of the framed structures	1.4	
	1.3	Scope of the present study	1.7	
2.	BEAM	ELEMENT INCLUDING PLASTICITY	2.1	
-	2.1	General	2.1	
	2.2	Basic formulation of beam element	2.1	
		2.2.1 Deformation, strain and stress	2.1	
		2.2.2 Principle of virtual work	2.3	
	2.3	Elastic beam theory	2.4	
		2.3.1 Basic assumptions	2.4	
		2.3.2 Strain-displacement relationship	2.6	
		2.3.3 Formulation of equilibrium and incremental		
		equilibrium equations	2.6	
		2.3.4 The incremental form of the equilibrium		
		equations	2.8	
	2.4	Elasto-plastic beam theory	2.10	
		2.4.1 Basic assumptions	2.10	
		2.4.2 Equilibrium and incremental equilibrium		
		equations for an element in an elasto-plastic		
		state	2.11	
	2.5	Reference frames and transformations	2.14	
	2.6	Stress computations	2.15	

- I -

з.	MODE	LLING OF PLASTICITY	3.1
	3.1	General	3.1
	3.2	Yield criterion	3.3
	3.3	Incremental elasto-plastic stiffness matrix	3.7
	3.4	Practical yield criterion in the formulation of the	
		system tangential stiffness matrix	3.9
	3.5	Plastic membrane elements	3.10
		3.5.1 Stiffness matrix for a membrane element	3. 13
		3.5.2 Unloading criterion for plastic membrane	
		element	3.16
		3.5.3 Brief discussion of the membrane element	
		model	3.17
	3.6	Comments on the hinge model	3.18
		<i>'</i>	
4.	. NUMERICAL SOLUTION TECHNIQUE		
	4.1	Solution methods adopted in the analysis	4.1
		4.1.1. Euler-Cauchy method	4.1
		4.1.2 Equilibrium iteration	4.2
		4.1.3 Convergence criterion	4.4
	4.2	Control of plasticity	4.5
		4.2.1 Increment scaling	4.6
		4.2.2 Scaling at the element level	4.7
		4.2.3 Unloading check	4.8
		4.2.4 Scaling of the "false" transition element	4.10
5.	NON-	LINEAR DYNAMIC PLASTIC ANALYSIS	5.1
	5.1	The equations of motion of the structure	5.1
	5.2	Structural properties	5.3
	5.3	Solution of the incremental equations in dynamic	
		analysis	5.5 -
		5.3.1 Newmark <i>β</i> -family integration	5.5
		5.3.2 Equilibrium iterations	5.7
	5.4	Solution of the pipe to pipe contact-impact problem	5.10
	5.5	Computer program	5.15
6.	NUME	RICAL STUDIES	6.1
	6.1	General remarks	6.1

	6.2	Static analysis	6.1
		6.2.1 Pin-ended beam colum	6.1
		6.2.2 K-shaped frames	6.4
		6.2.3 Plane frame structure	6.7
		6.2.4 Clamped beam	6.10
	6.3	Dynamic analyses	6.11
		6.3.1 Clamped end beam	6.12
		6.3.2 Framed dome	6.19
	6.4	Pipe-to-pipe impact	6.22
7.	ANALY	YSIS OF SHIP/PLATFORM COLLISIONS	7.1
	7.1	General	7.1
	7.2	Static analyses	7.4
	7.3	Dynamic analysis	7.8
,		7.3.1 Assessment of the peak force and the impact	
		duration	7.8
		7.3.2 Dynamic collision analyses	7.12
	7.4	Brief summary	7.26
8.	EARTH	HQUAKE RESPONSE OF JACKET PLATFORMS	8.1
	8.1	General	8.1
	8.2	Quasi-static analysis	8.7
	8.3	Dynamic analysis of a jacket platform subjected to	
		a ground motion	8.11
	8.4	Evaluation of the response behaviour of components	
		by structure response spectrum	8.20
9.	CONCI	LUSIONS AND SUGGESTIONS FOR FURTHER WORK	9.1
10.	REFE	RENCES	10.1
APP	ENDIX	A Interpolation functions for the beam element	A.1
APP	ENDIX	B Submatrices	B.1
APPI	ENDIX	C The incremental element stiffness matrix in elastic plastic state	C.1

APPENDIX C) Submatrice of tangential stiffness matrix for	D.1
	membrane element	
APPENDIX E	Macro Flow Chart of the Program DYSFRA	E.1
APPENDIX F	A well-head jacket platform	F.1

,